Incommensurate magnetic structure in Y_(1-x)Tb_xMn₆Sn₆.

<u>Yu.O.Chetverikov</u>¹, S.V.Grigoriev¹, A.I.Okorokov¹, A.N. Pirogov², S.G. Bogdanov², H.Eckerlebe³, K. Pranzas³ ¹ Petersburg Nuclear Physics Institute, Gatchina, St.Petersburg 188300, Russia ² Institute of metal physics UD RAS 620219, Russia ³ GKSS Forchungszentrum, 21502 Geesthacht, Germany

We have investigated the magnetic structure in the intermetallic compounds $Tb_xY_{1-x}Mn_6Sn_6$ ($0 \le x \le 0.25$) by means of small angle neutron scattering (SANS). In such intermetallic materials the competition between different exchange interactions results in a variety of the magnetic structures and properties. Thus, giant magnetoresistance was recently found in this type of materials [1].

The YMn₆Sn₆ is a compound crystallized in hexagonal HfFe₆Ge₆-type structure (space group P6/mmm) [2]. The lattice has an intrinsically layered structure, where Mn atoms are organized in a so-called "kagome" lattice within the ab planes, which are stacked along the c axis with Y and Sn₃ atomic planes between them. The Mn-Mn interplane distance through Sn₃ atomic plane is slightly larger than that through Y atomic plane. Below the Neel temperature T_N =333K the YMn₆Sn₆ compound has an incommensurate periodic structure [3]. It is believed that spins are ordered in the helix along the c axis similar to a simple planar helimagnet [4].

To make clear a role of different exchange interactions we studied samples where Y is partially substituted by Tb. The substitution of magnetic Tb for Y in the $Tb_xY_{1-x}Mn_6Sn_6$ compounds changes the magnetic ordering type from incommensurate antiferromagnetic to ferrimagnetic at the concentration $x \approx 0.2$. The ferrimagnets at x > 0.2 show a change of the magnetocrystalline anisotropy with increase of temperature from an easy-axis type to an easy-plane type through a conical phase [5].

The use of SANS allows one to observe large-scale magnetic ordering modes. Two scattering contributions are well distinguished. The first one is a diffraction peak, which originates from the scattering on the magnetic long periodic structure. The second one is a small angle scattering attributed to the magnetic inhomogeneities such as domains or critical spin fluctuations. The period of the magnetic structure calculated from diffraction peak position for T= 175K is d_{TB0} =3.76 nm for YMn₆Sn₆ and is $d_{TB.2}$ =7.06 nm for Tb_{0.2}Y_{0.8}Mn₆Sn₆. Coherent lengths of magnetic structure are w_{TB0}=17 nm and w_{TB.2}=28 nm. Experimental data suggest that the temperature behavior of the magnetic structure for YMn₆Sn₆ is very different from that for the simple planar helimagnet of Ho or Dy- type [4]. The temperature evolution of the magnetic structure for samples with Tb- substitution is even more complex. The c-T phase diagram is obtained on the basis of SANS measurements.

References

- [1] F. Canepa, R. Duraj, C. Lefèvre, B. Malaman, A. Mar, T. Mazet, M. Napoletano, A. Szytula, J. Tobola, G. Venturini and A. Vernière, J. Alloys Comp. **383**, 10 (2004)
- [2] R.R. Olenich, L.G. Akselrud, Y.P. Yarmoliuk, Dopov. Akad. Nauk Ukr. RSR Ser. A 2, 84 (1981).
- [3] G. Venturini, D. Fruchart, B. Malaman, J. Alloys Comp. 236,102 (1996)
- [4] P. de V. Du Plessis, A.M. Venter, G.H.F. Brits, J.Phys.: Condens.Matter 7, 9863 (1995).
- [5] N.K. Zajkov, N.V. Mushnikov, E.G. Gerasimov, V.S. Gaviko, M.I. Bartashevich, T. Goto, V.I. Khrabrov, J. Alloys Comp. 363, 40 (2004)