
Instrument control software development at
FRM-II

Jens Krüger

October 19, 2004

Abstract

The standard instrument control software at FRM-II is highly
modularized and based on TACO (http://www.sf.net/projects/taco)
and NICOS (http://www.sf.net/projects/nicos).

This design allows the instrument scientists to adapt their instru-
ment control software for special cases very easy.

TACO is used for the access to the hardware and NICOS works as
glue between the hardware modules.

It will be explained how simple extensions to the instrument con-
trol software may be added and how new hardware may be included.

1 Introduction

The standard instrument control software at FRM-II has to fulfil the follow-
ing paradigms:

1. it has to be network based

2. it has to be flexible in type of hardware and type of instrument

3. it has to use only a reduced set of device types with a common set of
commands for each type

4. the hardware should be replaceable without any changes in the instru-
ment control software

The software is based on two components:

• TACO device drivers

1



• NICOS methods

Since both systems are client/server systems the instrument control soft-
ware is naturally network based. The network based architecture gives the
flexibility to choose the right hardware components for the system. The only
boundary condition we have is the existence of a network interface. Hard-
ware may itself have the interface, or it is integrated in a computer which
have a network interface.

The TACO device drivers are directly connected with the hardware, and
are implemented as RPC-Servers which may run on different machines. Due
to the standard TACO command interface you may interact with the drivers
from different clients and you may move the drivers from one computer to
another without changing the Software. The only think you have to do is a
small change in the configuration.

The TACO device drivers implement only a special set of commands
which should be executed by the hardware. From the point of view of the
instrument control software it is not useful to implement all features of the
hardware in commands. In praxis it has been shown, that not all features are
really used. It is much more helpful to restrict the number of commands and
implement the features internally, or make them available by configuration
parameters.

2 Set of Functions

We, at FRM-II, decided to define a set of commands/functions of each device
type which are typically for this device type. So has a device for output of
digital signals really two commands:

• write a discrete value

• read the written value

From the view of software it makes no difference what the actual hardware
is. It may be a builtin computer card or a fieldbus module or whatever. The
difference in access to the hardware is hidden in the implementation of the
drivers. If the current hardware breaks and has to be substituted by another
you have only to change the setup and the perhaps to write a new driver.
There’s no rebuilding of software necessary. There is no really need to store
a pool of hardware components which are builtin into the experiments.

Not only the TACO device drivers are working in this way, also our
NICOS works in this way. It has itself a set of commands, so called ”NICOS

2



methods”, which handle the communication between all hardware compo-
nents. In difference to the TACO commands the NICOS method should
primarly handle more complex components of our instrument control like
monochromators and detectors. These components are intrument specific,
but the set of commands isn’t it. A monochromator has only some func-
tions:

• selection wavelength or energy

• focussing the beam in some directions

The way to get this may differ from instrument to instrument, but with
the help of this unique set of commands it will be possible to write more
generalized function like scans.

3 Why TACO and NICOS?

Whereas the TACO devices implement the hardware access the NICOS meth-
ods are used to develop more complex devices like monochromators and de-
tectors, in which a lot of components work together.

NICOS is written in Python (http://www.python.org). So gets the in-
strument scientist the possibility to integrate such complex systems into his
specific software directly with out the help of computer specialists, and may
also change some things are not working correctly in a simple way.

4 Development of a new TACO device driver

The development of a TACO device server from scratch is an exhausting
job, since you have to write a lot of lines of code for the TACO framework
before you could concentrate to the programming of the device specific parts.
The second problem you have is the definition of the command numbers and
parameters of the command. To overcome this problem we developed a
database driven system ”tacodevel” for defining and creating new TACO
device servers. This system helped us to write and test about 10 new TACO
device drivers per week with 2 persons.

The ”tacodevel” system consists mainly of three parts:

• database

• GUI

• code generator

3



The GUI allows to define:

• commands with its paramaters (including the type)

• devices with a set of commands (which have to be defined in the
database) and the client counter part

• device servers with a set of provided devices

From this definitions a code generator creates a code framework (includ-
ing all files necessary for autotools) which may be directly compiled and dis-
tributed. The only thing is missing is the code inside the commands. This
has to inserted in some functions and after them you may test the TACO
device driver.

Since the client normally already exists on your target due to the stan-
dard device command setup, you have only to install the driver on the host
machine and configure it.

The use of ”tacodevel” at FRM-II has reduced the zoo of device types
and uncontrolled growth of commands.

5 Development of NICOS methods

The term ”NICOS methods” suggest a set of functions, but it is more in a
sense of classes. The term method comes from the time were NICOS was
born. The idea was to create a set of functions but it was shortly after clear
a set of classes would be better, but the term was kept.

All objects in NICOS are derived from a base class ”Xable”. The next
layer of classes are the ”Switchable”, ”Moveable”, ”Countable”, and ”Read-
able”. In this categories may all of our compononents to be devided.

The instrument scientist has to overwrite the corresponding default class
methods by its own and all should work fine after fixing the bugs.

6 Software development tools

The software development at FRM-II uses mainly the following tools:

• autotools for software projects mainly written in C/C++/FORTRAN

• cvs as software configuration management tool

• Gnu Compiler Collection (GCC)

4



• Python

• Make (GNU, BSD)

• Qt framework to write portable software for Un*x/Linux, Mac OS-X,
Windows

7 Conclusion

The instrument control software at the exististing facilities has to be flexible,
simply to modify. It was show that with the current environment at the
FRM-II this may be reached.

The definition of sets of devices with a fixed set of commands may im-
prove the quality of development and maintainence of the instrument control
software. Not each feature of hardware should be integrated in the set of
commands. It is better to hide the feature in the setup and code.

5


