
PORTING SCIENTIFIC 
SOFTWARE TO WINDOWS 

(OR NOT) ?

NOBUGS October 2004

Andy Hammersley

ESRF Grenoble France



(An Aside)

• Software engineering is about GOOD 
DESIGN (which meets the requirements)

• If the design is good new features can be 
added easily within the existing 
framework

• If the design is bad adding new features 
will “bend” and “break” the framework

• Every framework has its limits

• Unfortunately good design is not simple



OVERVIEW
(Relevant to all User Controlled 

Programs)

• The Rise of Windows (and alternatives)

• What is a ported Windows application

• Porting experience

• Partial porting and alternative 
approaches

• Conclusion



WHY CONSIDER WINDOWS ? 
(~10 Years ago we didn’t)

1. PC HARDWARE

• Extremely Cheap (Remember workstation prices)
• Powerful (Only High end systems such as the Alpha and 

G5 significantly more)
• Versatile (Reasonably configurable)
• Convenient (Buy at Supermarket)
• Modular
• Portable (Even wearable !)
• Universal
• Becoming Scalable (64 bit, multi-core, Blade systems)



WHY CONSIDER WINDOWS ?
2. WINDOWS OPERATING 

SYSTEMS

• User Friendly (well much more than Unix)
• Enormous range of user software; both commercial and 

free
• Universally available
• Little System Administration
• Native on Latest Hardware e.g. Lap-tops
• Very high degree of compatibility between versions



IS LINUX GOOD ENOUGH ON 
THE DESKTOP ?

• “Not for my grandfather” (or IBM)
• Are dual boot machines a sufficient 

answer ?
• When will there be a single agreed Linux 

window manager style ?
• What is happening with commercial Linux 

?
• (Can Bill Gates and others use IP’s to kill 

free software ?)



SCIENTIFIC SOFTWARE 
HISTORY

• Some dates back to mainframe era

• Much developed on VAX/VMS

• Ported to many different Unix systems

• Graphics developed using X-11 Window 
System

• Often ported to Linux

• Many different types of graphical and 
command line interfaces



Keyboard and Graphical User 
Interfaces



WHAT ARE THE 
CHARACTERISTICS OF A 

WINDOWS APPLICATION ?

• Associate program with file type(s)

• Ability to drop files onto program icon

• Standard menu bar options (plus others)

• Standard “File” menu options (plus others)

• Standard Short-cut keys (e.g. Print: CTRL-P)

• “Click and Drag” interaction 



DATA FILES ASSOCIATED WITH 
FreeThinker



WINDOWS APPLICATION MENU 
BAR AND DISPLAY



WINDOWS “FILE” MENU



GOOD POINTS OF WINDOWS API 

• Consistency
• Documentation (Generally)
• Menu-bar and menus
• Bitmap hardware display independence
• Rotated text
• Form / Dialogue editor and wizards
• Fortran 90 better on Windows than many 

sub-standard Unix products



BAD POINTS OF WINDOWS API

• Where’s Posix (.1) Support ?

• Creating your own device independent 
bitmap and manipulating it is not trivial 
and only documented on the web

• Rotated text may not appear as 
requested, and without an error message



PARTIAL PORTING OF 
APPLICATIONS

• i.e. Get program running on Windows, but 
with the user interface as before e.g. 
FIT2D

• Much easier / faster approach

• Cygnus, etc. provide useful tools, but with 
drawbacks

• Command Window / Gnuplot approach



ALTERNATIVE APPROACHES ?

• Scripting languages: TOO SLOW, 
compatibility and support problems

• Java: Too slow, at best a hybrid solution 
would be necessary with its inherent 
problems

• High level platform independent 
component set (a pipe dream)



CONCLUSIONS

• (Porting) Applications to Windows will be 
more and more demanded

• Partial porting is possible and relatively 
easy, but results in a Unix application 
running on Windows

• Full porting may require complete re-
write of applications and is a lot of work.

• Well written modular code can be re-
used, but a lot of re-arrangement is 
necessary


