Computing environment design at J-PARC/MLF

Jiro SUZUKI?, Toshiya OTOMO?, Michihiro FURUSAKA®?, Masatoshi ARAI?, Shun
SUZUKI?, Atushi MANABE?, Setsuya KAWABATA®?, Narutoshi KAWAMURA?, Masao
YONEMURAZ?, Kenji NAKAJIMAP, Takeshi NAKATANIP, Shuki TORII, Ryoichi
KAJIMOTOP, Takashi OHARAP, Tetsuo AOYAGIP, Yoshitomo UNOP

®High Energy Accelerator Research Organization

bJapan Atomic Energy Research Institute

Materials and Life science Facility (MLF) of Japan Proton Accelerator Research Complex
(J-PARC) will provide one of the highest intensity pulsed neutron and muon beams. The
construction will finish at the end of 2007. Because it is expected that gigabyte order time-
of-flight data will be produced per one experiment, system developments and engineerings of
computers are crucial as well as instrument hardware designs to make really good use of all
the data. At first, we defined very simple components that should work correctively to realize
the computing environment for MLF; experiment, analysis, simulation, database, user interface
(we call this as working desktop), graphic, network (collaboratory), and security components.
The working desktop will interconnect between each component. This environment will provide
common functionalities for the neutron and muon experiments. Instrument specific functions
are expected to be developed and connected through the working desktop component. The
development of the analysis component, a framework, is progressing with C++ and it was named
as Manyo-lib. A systematic approach based on the object-oriented methodology was taken to
develop a software framework, in which users could easily develop and execute their analysis
software in the neutron scattering experiments. The framework has common and generic analysis
functionalities for the neutron scattering experiments. The first version of the framework was
applied to the analysis of a real experimental data and was found to be a convenient environment
for setting up and running data analysis software for the neutron scattering instruments.

1. Introduction

Japan Proton Accelerator Research Complex (J-PARC), is a new proton accelerator
complex, and frontier science in particle physics, materials- and life-science, and nuclear
technology will be performed. J-PARC, the joint project between High Energy Accelera-
tor Organization (KEK) and Japan Atomic Energy Research Institute (JAERI), is under
construction at Tokai campus of JAERI and its construction will be finished in 2007. The
Material and Life Science Facility (MLF) is a user facility providing neutron and muon
sources for experiments in J-PARC. Twenty-three instruments for neutron scattering ex-
periments will be installed in MLF. Averaged user activity will be 100 users a day, and
the time period of each experiment will be 0.5-2 days a group. The instruments and its
data analysis environments should be fully provided by the facility side.

Our basic concept is to provide a framework that has common and generic analysis func-
tionalities for the neutron scattering experiments, and the framework becomes a standard
analysis environment for the data analysis in MLF. The merit of object-oriented approach
helps us maintain and improve the analysis software for a long term. Since the framework
will work on many instruments, the framework should be available on various operating
systems; Linux, MacOS-X, FreeBSD, AIX and Solaris. The framework was named as
“Manyo-Lib”.

The analysis framework comprises a C++ framework, network distributed data pro-
cessing modules and user interface modules. The C++ framework was designed so as
to enable to handle large scale data in high-performance, and primarily consists of C+-+
class library. The base-classes are designed to construct analysis operators in the class li-
brary. The generic and common analysis operators for the neutron scattering experiments
were developed as derived-classes of the base-classes. User interfaces and the network dis-
tributed data processing module were designed on Python. The interface between C+-+
and Python is created by SWIG[1]. The SWIG, an interface compiler between C++ and
script languages, does not require to modify the C4++ source code. The interface com-
bines the high-performance applications written in C++ with the Python environment.
A number of analysis tools have been developed on Python, and some TCP/IP connec-
tion tools have been provided as Python standard library. The Python environment helps
users apply the framework to their applications without compiling the framework.

2. Design of the Analysis Framework

2.1. Data Container

Design of data structure is one of key issues. Simple and efficient data containers are
required, because their designs determine the system performance. Two types of class
templates are provided in the framework using the Standard Template Library (STL), in
terms of which various types of experimental data objects can be stored hierarchically.

The first type is a basic container for simple and generic purpose and consists of a set
of sub-containers and a header object container. The sub-container can store any type
of data-object. The number of sub-containers can be changed at any time, and the
information about the set of sub-containers can be installed into the header object. Each
information has the name-tag to manage its meaning and property. The header object
works like a note-pad and dictionary. The second type of container consists of a header
object container, a set of sub-containers, and each sub-container’s name-tags. Each sub-
container has the name-tag, and can be extracted by using its name-tag. This design is
very useful to store many number of data objects into this container. The capacity of
data container and its hierarchically structure is scalable.

2.2. Analysis Functions

The analysis package is divided into six class categories. System and Calculation cate-
gories provide basic tools of analysis package. Correction, Projection, Merge and Analyzer
categories provide common and generic analysis functionalities for the neutron scattering
experiments, each of which uses System and Calculation categories.

Fig.1 shows the design concept of an analysis operator. The calculation module cor-

INPUt ™) e Ternp|ate), OULPUL 3D Data — T late b= 2D Data
port Port Object emprete Object

Module Define the type of 1/0 ports, I—I—I
A connector how to read 3D object,
' analyze data, >

Vodule a) make 2D object b)

Figure 1. a) A schematic structure of analysis operator. The template is a base class of
module, and consists of input and output ports and a module connector. The module
describes the analysis procedures for each use case. b) An example of the basic and
simple use case of an analysis operator. An analysis functionality is organized by using
relationship of inheritances.

responds to each use case. Generic and common functionalities, including data flow, for
the neutron scattering experiments are provided in the framework, while the calculation
modules specific to user instruments should be prepared by the user side. The tools for
converting the data objects from the common formats of the framework to the NeXus[2]
format will be prepared. NeXus is one of the common data formats for the exchanging

of neutron muon and synchrotron scattering data among facilities and user institutions.
The NeXus format uses the Hierarchical Data Format (HDF) which is portable, binary,
extensible and self-describing.

2.3. Network distributed data processing environment
Fig.2 shows a general design of the data analysis environment for the neutron scattering.
It can be applied to on-line and off-line data analyses.

Slave host datafiles, command Master server
_— paramesters (Local host)
Input Data E";ase

roor JREC) > e
Framework : Framework: P‘
7
CH++
Framework <

Command
C++ Data h
Python < User
Framework e olte
Data A
I_::\pankof 5 | datazcquisiion I__) _(G w&

Working
Desktop
[

\ Command, |

Y Y

] bank of d isiti C: “
Seteclo?s > atariz%ﬂlseuon |_)'(Fram;/+vork AR External
Output application
bank of dat isiti C++ "
getectors 2 | ar?\i%ﬂlsenon |—, Framework)=
Data Reduction Potting tools,

Commercial softwares, etc.
Server

Figure 2. The diagram of the framework. The C++ framework on the data reduction
servers, the slave hosts and the master server are the same source code, and their Python
wrappers apply the C++ framework to each use case. The wrapper is the interface
exchanging command and data through the network between the hosts.

2.3.1. Data Reduction Server

Hundreds of detectors are arranged into a detector bank. Fach detector bank is con-
nected to a data reduction server (DRS) which consists of data acquisition, reduction and
analysis modules. The data, just collected by the data acquisition module, should be
corrected to real physical values. These corrections relevant to detectors are done in the
analysis modules. The corrected datum are gathered and merged into a small size data
in the data reduction module. The C++ data objects produced on the DRS are in the
common format of the framework. The objects are sent to the master server through the
network.

2.3.2. Master Server

As shown in Fig.2, the master server consists of the C++ framework with the Python
wrapper and the user interface. The character-base user interface have been developed
on Python. Python scripts, to be executed on the DRS and the slave hosts, are generated
on the master server, are sent through the network to the DRS and the slave hosts, and
then the master server receives its results. The scripts are executed as parallel processing
on the DRSs and the slave hosts, while their results are collected and analyzed on the
master server.

2.3.3. Slave Host

The slave host has only the C++4 framework with the Python wrapper. It can be worked
as a calculation server. This server receives the Python scripts from the other hosts,
executes them in high-performance, and returns the results. Since the C++ framework
and the wrapper on the slave hosts are identical to those on the master server, a slave
host can govern the other slave hosts. The capacity of data processing on this framework
is scalable.

3. An Application to the Experiment

A application software was developed based on the framework, so as to check the sat-
isfaction of the requirements. The application software is a data analysis software on
the framework for the Small/Wide Angle Neutron Scattering Instrument (SWAN) at
Neutron Scattering Facility of KEK (KENS). SWAN uses the wide wavelength range of
neutrons (0.05 - 1.1 nm), and three types of neutron detectors with different efficien-
cies and geometries were installed[3,4]. Neutron scattering from a sample is measured
by the time-of-flight (TOF) method. Fig.3 is the schematic analysis flow diagram for
SWAN. The scattering intensities observed by each detector bank were formatted into
3d (three dimensional) histogram objects in the data-formatter. The intensities at the
same geometrical condition were averaged in the projection with the projection module
which should be prepared for each use case. Neutron wavelength dependent factors like
detector efficiencies, incident neutron flux, sample transmission were corrected for each
averaged intensity in the correction. Histogram objects of the neutron cross section of
sample versus momentum transfer were obtained in the analyzer. The formatter, projec-
tion and correction run on the DRSs assigned to each detector bank. The analyzer and
the user-interface run on the master server.

The application software was developed and executed on the Python environment. The
application is executed on a master and slave servers whose operating system are Linux,
FreeBSD and MacOS-X. The applications are working very well.

|

G Working Desktop)

Incident
beam monitor

datafiles ad 2d o o
i ¢ i Object) am
data Object_ | projection - Object
> ——=>| correction == analyzer — (output
information formatter 3d->2d y.
about experiment |

projection correction analysis

C++ framework module module module

Figure 3. Flow diagram of application software. This system is executed on a master
server and two slave hosts. 3d Object, 2d Object and Histogram are three dimensional
histogram object, two dimensional histogram object and one dimensional histogram ob-
ject, respectively.

4. Conclusion

An analysis framework for the neutron scattering experiments based on Object-Oriented
approach has been developed. The framework, “Manyo-Lib”, provides common and
generic data analysis functionalities for all the neutron scattering instruments. We applied
the framework to the analysis-software and confirmed its functionalities and stability. The
framework works in high-performance with ease, since the analysis functions are called
from the Python environment but run in the C++ environment. Because the structure
of the network distributed data processing environment is hierarchically, the capacity of
data processing in the framework is scalable. The Object-Oriented methodology helps us
develop and share the data analysis environment for the neutron scattering and its data
for a long time. The current version of the framework and its manuals are available from
the web site[5].

REFERENCES

1. http://www.swig.org/

http://www.neutron.anl.gov/nexus/

3. M. Furusaka, Proceedings of ICANS-XI (International Collaboration on Advanced
Neutron Source), Tsukuba, (1990) 667.

4. T. Otomo, M. Furusaka, S. Satoh, S. Ttoh, T. Adachi, S. Shimizu and M. Takeda, J.
Phys. Chem. Solids, 60 (1999) 1579.

5. http://research.kek.jp/people/jisuzuki/.

&

