
NOBUGS 2004

HDF Software Process - 1 -

HDF Software Process
Lessons Learned or Success Factors

Mike Folk and Elena Pourmal
NCSA HDF Group

December 20, 2004

I. Introduction___ 1

II. What is HDF? ___ 2

III. HDF statistics ___ 4

IV. How do we measure success?_______________________________________ 5

IV.1 Mission, goals and objectives__6

IV.2 Software quality and usefulness ___6

IV.3 Relationships with users ___7

V. How can we achieve success__ 7

VI. Developing and maintaining high quality, usable software ______________ 8

VI.1 Discover and clarify need___8

VI.2 Develop an implementation approach ___________________________________ 11

VI.3 Implement__ 12

VII. Group practices – technical _______________________________________ 12

VIII. Group practices – business and social_____________________________ 14

IX. More about project planning ______________________________________ 16

X. Strengths, weaknesses, needs __ 17

Appendix – NASA TRL __ 19

 I. Introduction
This is a collection of thoughts on the HDF group approach to software development, and
on software engineering and technical, business and social group practices as integral,
mutually bound parts of the software development process.

The HDF project that is briefly described in the next section has been a very successful
software project for the past 15 years. We would like to share our software development
experience and practices, the factors that have lead us to these achievements, with our
users, and with software developers who work within the walls of universities or in not-
for-profit open source software groups. These factors include the following:

NOBUGS 2004

HDF Software Process - 2 -

• Strong, responsible, and continuing relationships with users

• An approach to needs identification, software design, and software
implementation based on sound principles of software engineering

• Effective technical processes for developing, testing, integrating and
maintaining software

• Business and social processes based on sound group management principles

These factors are little more than platitudes, however. The manner in which they are
successfully applied can only be understood by examining the details. In these pages, we
describe some of the details, emphasizing mostly those areas in which we have had
success.

 II. What is HDF?
To understand the software engineering practices of the HDF project, it is useful to know
a bit about HDF itself. In this section we describe HDF, and some aspects of the HDF
implementation that make the project challenging. We focus on HDF5, but HDF4 has
similar characteristics. For more details, visit http://hdf.ncsa.uiuc.edu.

Briefly, HDF (Hierarchical Data Format) is a project at the National Center for
Supercomputing Applications) that has developed two file formats (HDF4 and HDF5),
together with I/O libraries and other software for storing, managing and archiving large
complex scientific and other data. HDF software has a University of Illinois License, but
is open source and free for any use. Because it is supported by a number of organizations
for which it is a critical technology, the format is well supported and maintained.
Detailed information about HDF, its users and applications, can be found at
http://hdf.ncsa.uiuc.edu.

Both HDF4 and HDF5 were designed to be a general scientific format, adaptable to
virtually any scientific or engineering application, and also have been used successfully
in non-technical areas. HDF5 is particularly good at dealing with data where complexity
and scalability are important. Data of virtually any type or size can be stored in HDF5,
including complex data structures and data types. HDF5 is portable, running on most
operating systems and machines. HDF5 is scalable – it works well in high end
computing environments, and can accommodate data objects of almost any size or
multiplicity. It is also efficient, providing fast access to data, including parallel I/O. It
also can store large amounts of data efficiently – it has built-in compression, or
applications can also provide their own special-purpose compression.

HDF4 and HDF5 are both widely used in industry, academia, and government. There are
more then 200 distinct applications of the formats, and an estimated 1.6 million users of
NASA data alone. It is also the base format for a number of community standards, such
as HDF-EOS, the standard for NASA’s enormous Earth Observing System
(http://hdfeos.gsfc.nasa.gov/hdfeos/index.cfm) , and NeXus, the standard for Neutron, X-
ray and Muon Science (http://www.nexus.anl.gov/index.html) . It is useful to think about
HDF software in terms of layers (Figure 1). At the bottom layer is the HDF5 file or other
data source. Above that are two layers corresponding to the HDF library. First of these
is a low level interface that concentrates on basic I/O: opening and closing files, reading

NOBUGS 2004

HDF Software Process - 3 -

and writing bytes, seeking, etc. Next is the high-level, object -specific interface. This is
the API that most people who develop HDF5 applications use. This is where you create
HDF objects such as a dataset or group, and perform operations on the objects, such as
reading and writing datasets and subsets, etc. At the top are applications, or perhaps APIs
used by applications. Examples of the latter are the HDF-EOS API that supports NASA’s
EOSDIS datatypes, the NeXus API that supports instrument definitions and
corresponding data, and the DSL API that supports the ASCI data models.

Figure 1. HDF library in context.

The way that HDF5 handles storage and I/O adds considerably to the complexity of the
project. This is illustrated in Figure 2. When data is written, if frequently must be
transformed, by changing its datatype, its endian-ness, by compressing it, and perhaps by
storing it in chunks. The virtual file options make it possible to write and read in a
variety of ways, including the normal standard I/O, MPI-IO (for parallel I/O), and a “split
file” (metadata in one file, data in the other). This layer is exposed to users by a public
API, so that users can write their own drivers for reading and writing to places other than
those already provided with the library.

Figure 2. User controlled I/O and storage.

At the top level, the HDF5 library is accessible with a number of compilers and
languages. The basic library is written in C, but included full wrappers for C++,
Fortran90, and Java. The project supports vendors compilers on all platforms where they
are available, and the GNU compilers wherever possible.

Tools and applications

HDF5 Applications
Programming Interface

Low Level Interface

File

Utilities and applications for managing,
manipulating, viewing, analyzing data

HDF5 file or other source of data

High-level, object-specific APIs

Low-level API for I/O to files, etc.

HDF5 I/O Library

HDF5 File

Data pipeline: Data transformation,
compression, encryption, storage layout

Virtual file options: Stdio (normal file),
split file, MPI-IO & other parallel,
network, memory, custom

NOBUGS 2004

HDF Software Process - 4 -

Because portability is an important requirement of HDF, a good deal of energy goes into
supporting it on as many platforms as possible, sometimes on several different operating
system versions on a single platform. A partial list of supported architectures and
operating systems includes Sun Solaris 2.7 and 2.8 (32-bit and 64-bit), SGI IRIX6.5 and
IRIX64-6.5, HP HPUX 11.00, IBM AIX 5.1 (32/64-bit modes), OSF1, FreeBSD, and
Linux (SuSe, RH8, RH9) including 64-bit.

We see that HDF has many variations at many different levels, and this is what makes the
project particularly challenging. Figure 3 illustrates the complexity of the project when
taking these different options into account.

Figure 3. HDF5 library in context.

 III. HDF statistics
In the previous section we gave a brief description of the HDF project. In this section we
will try to give some “quantitative” characteristics of the project, i.e. what it takes to
develop, support and maintain a project of such nature and size and why it is a
challenging task.

As was mentioned above, the HDF group develops, supports and maintains several
products:

• The original HDF file format and I/O library known as HDF4. Petabytes of
NASA data from the Terra and Aqua satellites is archived and distributed in this
format. The HDF4 distribution includes miscellaneous utilities to manage data
stored in the HDF4 format.

• The recently-developed HDF5 file format and I/O library and utilities, which
address the demands of high-performance computing and data storage.

HDF5 File

Tools & Applications

C C++ F90 Java

HDF5 Applications
Programming Interface

Low Level Interface

IA32 SGI Wintel Cray

Linux IRIX32 XP SV1

Serial Parallel

HDF-EOS NeXus Etc.

NOBUGS 2004

HDF Software Process - 5 -

• The H4toH5 Conversion Library and utilities to convert HDF4 files to HDF5
files.

• The H5Lite library, which provides HDF5 users with convenience API functions
and APIs that enforce standard ways of storing images and tables in HDF5 files.

• Java interfaces to both HDF4 and HDF5 libraries and Java browser/editing tools
to manage data in both HDF4 and HDF5 files.

The HDF5 projects alone consist of approximately 2073 files or about 917,000 lines of
the source code. For all products this number exceeds 3,000,000 lines of code that is
supported, maintained and distributed to HDF users all over the world. For the HDF5
Library, relative sizes of categories of the source distribution are shown below:

• C, C++ and Fortran source code 30%

• Documentation 30%

• Configuration code 15%

• Library tests 13%

• Source code for utilities 4%

• Tests for utilities 4%

• Examples and misc. 4%

The HDF group currently includes 15 full time staff members and 3 to 5 students
(graduate and undergraduate). The group’s annual budget is $2.1 million.

Most group members have been on the project for more than 7 years. Since the
University of Illinois has one of the best Computer Science departments in the country,
we do not lack bright, knowledgeable and hardworking students who are eager to help us
with short-term development and maintenance tasks. Both factors play significant roles in
the HDF group’s ability to meet the demands of the constantly growing HDF users’
community.

The sections below describe how the group operates, its mission, how it sets goals and
achieves objectives, and the group’s day-to-day practices that lead to the success of the
HDF project.

 IV. How do we measure success?
There are a number of components to how we measure success. Although we describe
them here somewhat formally, in reality they have emerged over the years in an ad hoc
and informal manner. The components include

• Mission

• Goals and objectives

• High quality, useful technologies

• Strong and continuing relationships with users

NOBUGS 2004

HDF Software Process - 6 -

• Strong, committed development team

• Great working environment

• Adequate funding

IV.1 Mission, goals and objectives
The mission of the HDF Project is to develop, promote, deploy, and support open and
free technologies that facilitate scientific data exchange, access, analysis, archiving and
discovery.

Corresponding to the mission are a number of goals, including the following examples:

• Innovate and evolve HDF software and services in concert with a changing
world of technologies

• Maintain a high level of quality and reliability

• Collaborate and build communities

• Build a team

For each goal, there are objectives, which are statements of how we intend to reach the
goals. For example, the goal “Maintain a high level of quality and reliability” has the
following objectives:

• Improve testing

• Implement a program to insure excellent software engineering practices

• Develop and execute a plan to meet quality/reliability standards

We think that the ability to constantly focus on the project’s mission and to achieve its
goals and objectives are vital to the success of the HDF project.

IV.2 Software quality and usefulness
The reason for HDF is to address users’ needs and demands, both current and future.
This means, for example, enabling users to deal effectively with big files, to access data
in parallel, and to be able to handle large numbers of objects. We measure success in
terms of the HDF software’s usefulness and quality.

Usefulness of HDF can be measured by the number and types of applications that are able
to use it, by the appropriateness of HDF APIs and data models, availability and
effectiveness of tools, and interoperability with other software, including commercial
tools such as IDL, MatLab, and Mathematica.

Acceptability is another measure of usefulness. The acceptability of HDF is attested to in
those instances in which HDF has become a de facto standard. For instance, HDF has
become an open standard for exchange of remote-sensed data, with over 3 trillion bytes
stored in HDF and HDF-EOS, or megabytes of experimental data stored in the NeXus
files.

NOBUGS 2004

HDF Software Process - 7 -

We consider HDF software quality very broadly: it is not only the correctness and
robustness of the HDF library. Two criteria described below are derived directly from the
HDF mission and goals.

 In the case of HDF, can data be shared across systems and across applications? Does the
software run correctly and efficiently on all needed platforms? Thus Portability becomes
a principle criterion for assessing HDF software quality.

Sustainability also is important, as many HDF users want to be able to commit to using
HDF for a long time. Can a user read data written 15 years ago on an obsolete platform?
Will the HDF software be available in 15 years?

IV.3 Relationships with users
In the end, users are the final assessors of the quality and usefulness of the technology
and of the project itself. We measure the goal of “a strong and continuing relationship
with users” by several measures:

• The number of users

• The number of happy users

• The number of unhappy users

• How well users achieve their goals by using HDF technologies

• How often users return with new needs

• The level of financial support we are able to receive from users

We see steady growth in the number of HDF users and in the number of the domains
users come from. We work very hard to satisfy and address HDF users’ needs. The
following sections describe how we organize our project and what we do to “make HDF
users happy.”

 V. How can we achieve success
We have seen that there are two general areas in which we measure success: by the
quality and usability of the products, and by the satisfaction and involvement of users.
Achieving success in these areas involves the following:

• An approach to needs identification, software design, and software
implementation based on sound principles of software engineering

• Activities that maintain strong, responsible, and continuing relationships with
users

• Effective technical processes for developing, testing, integrating, and
maintaining software

• Business and social processes based on sound group management principles

The following sections provide detailed descriptions of these activities and processes.

NOBUGS 2004

HDF Software Process - 8 -

 VI. Developing and maintaining high quality, usable software
We have identified the following steps to developing software.

1. Discover and clarify need

(a) Discover need

(b) Identify sponsor

(c) Clarify need

(d) Enter into project plan, with initial estimates (time, sponsor, resources,
priority, lead)

(e) Produce Request for Comment (RFC)

(f) Get feedback on RFC and revise as necessary

(g) Archive final version of RFC

2. Develop an implementation approach

(h) Assign task

(i) Create initial design or approach and generate “design/approach” RFC

(j) Get feedback on RFC and revise as needed.

(k) Develop validation plan – how will this be tested?

(l) Archive RFC

(m) Revise project plan according to RFC results.

3. Implement

(n) Implement, including tests.

(o) Ask sponsor to look at it and give feedback.

(p) Review result and repeat steps (d) – (h) as needed.

(q) Clean up: put in release notes, make sure it is covered in all appropriate
documentation, and announce.

(r) Debug and revise as needed.

4. Maintain and support

VI.1 Discover and clarify need
Discover need. For a software product like HDF, there is always an abundance of
suggestions for improvements and additional features. The problem/request may
originate from a user, a sponsor, or one of our own team.

Identify sponsor. It is also important to identify the sponsor for any given need. The
sponsor may be an organization that will pay to have the need satisfied, or it may be
“everyone,” when the need is some general feature that we know will help a large number
of users.

NOBUGS 2004

HDF Software Process - 9 -

Clarify need. Whoever it comes from, some effort is given to clarifying what a particular
need is, as well as its importance. This can only happen successfully through close
participation between the originator and the team. For instance, often a user identifies a
need for a library change, only to find that a different approach to using the library makes
this need unnecessary. For this reason it is important for team to have as much of an end-
to-end understanding of the user’s needs as possible.

With HDF, we try hard to attend meetings or workshops in which users describe their
work. (Their work, not just their needs.) When possible, we follow up these meetings
with presentations to the user groups, outlining the work that might be done. This helps
clarify that the two parties have a good mutual understanding.

The interactions between requesters and HDF team cannot be a one-shot exercise. There
has to be close collaboration with frequent interactions. The frequency of interaction
depends on the product, but we try to have telecons with our most important users at least
once per month. Sometimes the interactions are daily. Time must be allocated for this
activity – in the long run it saves time by keeping a project on track and avoiding
unnecessary effort.

Enter into project plan. Once a need is clarified and considered appropriate to do, it is
entered as a task the HDF project plan. The HDF project plan is a large plan that
contains all possible tasks that we might work on in the next year or so. We keep an
additional plan of tasks that may be done someday, but are not seen on the horizon.

We try to do a project plan for anything that will take more than a week. We should do a
project plan for shorter tasks, but we rarely get around to it.

One reason for a project plan is that it forces us to think through what we need to do. No
matter how many times we develop software, we still tend to forget things that will need
to be done, especially things that we would rather not do. Things like writing an RFC,
developing a testing plan, writing documentation (ref manual and user’s guide). Instead
we generally think “how long will it take me to write my code?”, and that’s it.

Microsoft Project is used to organize the project plan. Although it takes a good deal of
time to use and to keep current, it helps a great deal in understanding the complexities of
the overall project, and in planning individual tasks. It is also a good device for
communicating with team members about their responsibilities and commitments, and
the role of their tasks in the overall project.

When a task is first entered into the project plan, it is usually not fully understood.
Nevertheless, at this stage it is useful to prioritize the task, make initial estimates of the
duration and resource requirements, identify a person who will be responsible for the
task, and perhaps identify one or more persons who might work on it.

A project plan includes a work breakdown structure (WBS). The WBS part of the plan
involves breaking each task into sub-tasks, estimating the duration of each, assigning sub-
tasks to people and identifying dependencies. We use Microsoft Project for this. We
also include these extra columns in our project plan:

NOBUGS 2004

HDF Software Process - 10 -

• Sponsor – catch-all for who’s paying for it, who asked for it, who is it
important to)

• Lead – who is responsible for getting the task done. Often this is not the
developer.

• Priority – what is the priority for this task. We have many priority levels,
focusing largely on how important a piece of work is to a particular future
release.

• Duration – how long the task should take. Making time estimates is a
challenge. Like everyone else, we are poor at this, but some of the
activities described above and below make us better than we might
otherwise be. Developing software is always a learning experience,
especially interesting software, so a lot of what developers do can only be
known after they do it. That said, it is really important to keep trying.

• Release, etc. – what software release are we targeting, if any? This is a
catch-all column, because some tasks are not for a particular release, but
for some other purpose. Some tasks are ongoing – these need to be
included so that we remind ourselves that the person doing them can’t
spend full-time on other things. We also have to remind the person of this.

• Notes – MS Project lets you attach a note to each task. We use this feature
a lot. We find that it’s easy to forget what was meant by a task, or some
tidbit of information that clarifies what’s important to consider, or a
suggested approach, etc.

Needs/approach RFC. Once a task reaches a high enough priority that we plan
definitely to work on it, someone is assigned the task of writing up a needs/approach RFC
(Request For Comment). This describes the needs and general approach that is planned.

We try not to start a project until a needs/approach RFC has been written, but in practice
we only do this under certain circumstances, such as (a) when we know there are a
number of interpretations, (b) the task can be big or small, and we need to know what
parts are most important, or (c) we don’t have much knowledge in the area of the request
and need to educate ourselves (and perhaps the sponsor). This RFC speaks to both the
HDF team and requester, and requires both of their input.

Developers generally do not like to write RFCs. They want to get started with the real
work – coding. Developers often have to be forced to write RFCs, and should be praised
and rewarded for this unpleasant task.

Get feedback on RFC and revise as necessary. The needs/approach RFC is first
circulated among team members, then revised and circulated among all who are deemed
to have a possible interest in the work.

It is not enough to ask people to read and respond to RFCs. Some will read them, but
most won’t read them or won’t read them critically. We find that we have to place most
people in a situation where they have to respond. We have two weekly slots during which
we discuss RFCs and other technical matters. People are expected to keep those times

NOBUGS 2004

HDF Software Process - 11 -

free. RFC review meetings help the team focus on the RFC and usually stimulate good
questions and ideas. They always results in revisions to the RFC.

Ideally, we would engage the entire user community in this activity, but that is
impractical, so we identify representatives and pigeonhole them to participate. It is
important at this stage aggressively to seek comments from the community.

The comments from the meetings and other feedback are folded back into the RFC, and
new versions are produced as needed. RFCs may have to go through several iterations.
Developers dislike doing this, but they must. Praise them for it.

Archive final RFC. RFCs must be archived and not lost, and it should be standard
practice to refer back to them when questions arise about the purposes of a particular task
and the reasoning behind some of the decisions made.

VI.2 Develop an implementation approach
Assign task. At this point, there is a commitment to carry out the task, and one or more
staff members are assigned to the task.

Create initial design or approach and generate “design/approach” RFC. If the task
is substantial, it will probably require a design or approach to be worked out. This is
done and written up in RFC-form. In some cases, this can be just an extension of the
needs RFC, and in many cases they can be combined into one, but not always.

This RFC is generally circulated just among the team, but it’s good if possible to have the
sponsor (or others who would be influenced by the results), especially if the project is
major or of particular importance. As with the needs RFC, it is important aggressively to
seek comments from the team, and there is sometimes also a seminar to review the
document. Comments are folded back into the RFC, and new versions are produced as
needed.

Develop validation plan. In the case of substantial features, we also encourage a
validation plan. That is a plan for how the feature will be tested. If the feature is a utility
with many options, this plan can be very extensive. It is of course important to have a
validation plan in order to test the feature after it is implemented, but a validation plan
also frequently sheds light on ambiguities and other questionable aspects of the design.

Testing consumes considerable time and resources. Many believe that tests should be
identified during the design phase (or earlier) before any coding begins. This includes
both unit and system integration tests. We agree with that principle, but in our
experience, we just haven’t done this very well. For one thing, we don’t have an official
test enforcer, so they get forgotten if the project lead doesn’t insist on it. That said, when
we do follow this principle, we are always glad we did. Certainly, a lot of tests won’t
even be thought of until later because of changes in design and requirements that occur
during implementation, but going through the exercise of identifying tests ahead of time
is very valuable.

The testing plan may be included in the design RFC, or perhaps in a second document.

Archive RFC. Once the design is felt to be mature enough to begin implementation, the
RFC and validation plan are archived.

NOBUGS 2004

HDF Software Process - 12 -

Revise project plan according to RFC results. The project plan can now be updated to
reflect a (presumably) more accurate understanding of the task and what it will take to
carry it out.

VI.3 Implement
The following is a sketch of what we do during this phase. Many details about what is
done during this phase are covered below under “Group Practices.”

Implement. Implementation means coding, testing and documentation. Coding in the
HDF group is generally done by an individual. Details about this phase are covered
below under “group practices.”

Ask sponsor to review and give feedback. Every effort should be made to get feedback
from sponsors during this phase. Because we check in code changes to a “development
branch” of the library, we are able to make this version available to sponsors who have a
particularly strong interest. This helps achieve timely feedback and can avoid
misunderstandings. Ideally sponsors provide us with code to test whether our library
changes meet their needs.

Release. As with most software development, the release process can be very extensive.
Documentation must be completed, all platforms must be tested, and the release
announced. A release process can last from a couple of weeks to three months, or more.
Most often it takes about two months.

VI.4 Maintain and Support
This is the most important part of the software development process for our users, though
it is often the least exciting and most time consuming part of the process for the
development group. During this stage, we port to new compilers and operating systems,
tune for performance, fix bugs, and add documentation. We may also repeat steps 1-3, as
described above, based on user feedback.

 VII. Group practices – technical
Source code statistics. The HDF software source code statistics were described in
section III. As you can see, there is so much code that individual team members must be
assigned to support particular parts of the HDF libraries, utilities, or documentation.

Release levels. Three types of release are available:

1. Development release and snapshots. As noted, the release under development is
made available frequently as a “snapshot”, allowing daily testing (see “testing”
below) and making the latest code available to friendly users and sponsors.

2. The official release. This is the release that has undergone thorough testing, is
presumably very stable, and that users are supposed to rely on.

3. Past releases. It is very important to recognize the release of new versions of
software can be very disruptive on users of the software. Some HDF users have very
elaborate software systems themselves, and cannot change releases on the same
schedule that we do. For some, adapting to a new release may be impossible. For

NOBUGS 2004

HDF Software Process - 13 -

these reasons, past releases are extremely important, must be readily available, an
need to be supported fully.

Some official releases are “minor” in that they involve only small changes to the library,
and often some performance improvements. Minor releases occur about 2-3 times per
year. A “major” release is likely to contain substantial changes to the API, and may even
contain changes in the underlying format. Historically, these have occurred about once
every two years. It is usually important to synchronize releases with users.

We follow the numbering system used by Linux and other developers: odd-numbered
releases are under development, and even-numbered releases are final supported releases.

Source code management. Everyone uses CVS, and the use of CVS is well-defined,
with conventions reasonably well documented and enforces. (E.g. check-in includes
information about how code was tested.) Serious effort is given to determining how best
to package code – and this evolves over time.

Coding standards. This is a tricky and sometimes nuanced issue. In general, coding
standards are encouraged and enforced. At the same time there has to be some freedom
for differences – platform, compiler, and IDE differences have to be accommodated, and
individual stylistic differences can be important.

Code reviews. We would like to do code reviews, but have found that we just don’t have
the time for them. In some cases a senior person will review the code of someone who is
new to the library or tool, and that can be beneficial. Such review, however, must be
done with some tact, because coding can often be a very personal activity.

Maintaining platform-independence. The group has developed good knowledge of
what it takes to achieve platform independence. There are many aspects to this, from
coding guidelines to the overall design of the product. A lot of resources are required to
maintain the configurations and build environments that support testing and platform
independence.

Maintaining time-independence. It is important to make sure the code holds up over
time, because others rely on it. Every user of HDF5 has a different time frame for
upgrading to new releases of the library. For instance it is usually necessary to support
versions of the library for several different versions of certain architectures, operating
systems, compilers and file systems. Supporting these different versions adds enormously
to the cost of supporting HDF.

It is also important that the source code itself hold up as long into the future as possible,
because many users archive their data in HDF and will need to access it into the future.

Rules for changing APIs. This is still a difficult, tricky issue. Different users have
different needs, and it is hard to balance the need for a stable API and library (e.g. for
vendors and other users who can’t easily rewrite code to accommodate changes) against
the need to respond to new requirements and shortcomings that are discovered in the
code.

Testing. Testing is absolutely critical to the project, and occupies probably 15% of all
activities of the group. Tests currently make up 17% of the sources code, and should
make up a larger percentage. Testing occurs in a number of ways in the project:

NOBUGS 2004

HDF Software Process - 14 -

1. Testing before code check-in. Any new code, including code changes (e.g. bug fixes),
should be tested on three different platforms before they are checked into CVS.
Some developers are really good at this, and others can be more forgetful. We’ve
tried various mechanisms to enforce this, but nothing very draconian.

2. Daily regression testing. We have automated daily testing of the entire code base on
a number of platforms. There is a “platform watcher” assigned to each platform, who
is supposed to notice when any tests fail on their platform, and try to suggest some
action. In practice, there are a couple of people who do most of the watching. Since
daily testing takes a lot of resources, it only occurs if changes have been made in the
code.

3. Weekly regression testing. A second tier of platforms are tested weekly, also
automatically. These are perhaps less important platforms, or platforms that are
harder to reach or for some other reason not good for daily tests.

4. Remote system testing. There are some key remote systems that we test regularly.
These are provided by vendors and others whose users need HDF

5. Testing of different configurations. Figure 4 illustrates the enormous number of
combinations of library features, languages, architectures, operating systems, and file
systems that HDF5 needs to support. Extensive efforts are made to cover as many
different configurations as possible.

Figure 4. The testing challenge. HDF5 is currently
tested daily in 68 configurations, HDF4 in 14.

Documentation. We have a full-time documentation person, plus a part-time student.
Also, the QA lead and other staff participate significantly in documentation. Compared
to most groups, we are rich in this area. Still, this is far too little to meet our needs, and
we are reminded of this almost daily.

Rapid prototyping. This is tremendously valuable when we do it, but we don’t do it
very often.

 VIII. Group practices – business and social
Staff breakdown. As we described in section III, the HDF Group at NCSA has 15 full-
time staff, plus between 3 and 5 students, supported by an annual budget of
approximately $2 million. We have staff for user support, documentation, quality
assurance, software development, testing, and team leadership. There is a lead for tools,
QA, library development, weird platforms, high performance systems and applications,

THE TESTING CHALLENGE

machines x operating systems

x compilers x languages

x Szip (encoder + no encoder)

x (serial + parallel)

= a very large number

NOBUGS 2004

HDF Software Process - 15 -

and system administration). Team leads have different skills and emphases – they
complement one another and keep each other honest. We have inadequate staff in some
of these areas.

In an effort to determine how technical staff members spend their time, we asked each
member to estimate how much time they spent on a variety of activities. These results
are gross estimates, but they do give a sense of how we distribute our time.

Code development 24%
Test writing 4%
Pre check-in testing 3%
Release testing 5%
Platform support 4%
Peer-to-peer communications 14%
User's support 17%
Docs, RFC, consulting 17%
Other comm. with users 2%
Meetings, etc. 11%

Summarizing, according to these estimates, software implementation, testing, and
internal communication consume about 54% of technical staff time, and support-related
activities about 36%. Approximately 10% of staff time is devoted to other purposes.

Accountability of everyone to the whole process. We strive for an attitude that we are
all, as a team, accountable for the end product. There should be no handing off in the
sense of “it’s your problem now, not mine.” One way this is emphasized is that every
developer participates in testing – everyone has responsibility for one or more platforms.
This spreads the knowledge and accountability.

Help desk. We have a 3/4-time helpdesk who is very well-organized and good at
working with users. Also very important is the existence of a strong relationship between
the helpdesk and developers. The helpdesk serves as a clearinghouse – often it can
answer questions, but sometimes it needs to prioritize requests, and recognize when to
consider fast-track responses to problems. This can be a distraction for developers and
others, and often leads to delays in other parts of the schedule. It is a balancing act. It is
very important to be aware of the phenomenon and constantly monitor it and react
accordingly.

Approaches to carrying out tasks. Every task is different, so there are variations on
how every task is dealt with. Difficulty, urgency, priority, cost, and availability of
expertise are the factors that usually define our approach to the task. All combinations of
these factors can occur, so the way they are treated varies enormously. Unless you have a
team that is pulling together and understands one another, it is impossible to deal with all
of these effectively. Having agreed-upon processes helps a great deal, even if you don’t
always follow the same processes.

Weekly HDF5 developers’ meetings. In meetings, structure is important, as is
consistency – they help insure that things get covered and get done. Consistency is also

NOBUGS 2004

HDF Software Process - 16 -

important because it sends a message that we believe in the process and are serious about
it.

Meeting notes include notes of all of the items shown below. They are displayed on a
screen during the meeting, and made available on a web site. Meeting notes are
important in both remembering and clarifying decisions.

The meeting structure includes:

(a) Set agenda. In particular, recommend topics for technical discussion. See (d)
below. We encourage people to identify these discussions before the meeting,
and have a rule that nobody should be expected to read background material
without receiving it two days before the meeting.

(b) Review action items. A running list of open action items is kept. This is
displayed and each item is reviewed.

(c) Reports. Each participant submits a report prior to the meeting, describing work
done since the last meeting, with the goal that the whole team is aware of what
each person is doing, what issues they are addressing, and what results they are
getting. Technical discussions often arise during this time, and these are not
allowed to go on for very long. If further discussion is called for, this is identified
and planned.

(d) Technical discussions.

HDF seminars. A two-hour time slot set aside for weekly seminars, presentations of
technical papers, lectures on the innards of HDF, and discussions of important issues.
This is valuable in facilitating communication and distributing knowledge in the group.

Decision-making processes. Ideally, decisions are never made without consultation, but
this is a “herding cats” problem. The HDF5 developers meeting is a critical part of this.
After a certain amount of debate, if an issue is not resolved, it goes to a single person or a
committee. Generally, we believe that it is better to take the necessary time to make good
decisions than it is to make decisions quickly.

Frequent meetings with staff and performance reviews. Supervisors meet frequently
(usually at least weekly) with staff to assess and plan activities. Performance reviews
serve a similar purpose (among others), in that they can determine how individuals are
meeting their areas of responsibility, being very specific about what those areas are, and
setting metrics for determining success.

 IX. More about project planning
Who are the sponsors? As mentioned above, every task is assigned a sponsor.
Sponsors include organizations that provide funding, users whose applications help
promote the use of HDF or make it widely available, and someone in the group who
champions implementing a particular feature or other task.

Re-prioritization and re-definition exercises. It is important frequently to revisit the
project plan. The HDF “to do” list has over 500 items, with perhaps 100 that are
considered high priority, and maybe 10 that are being worked on at any time. (This

NOBUGS 2004

HDF Software Process - 17 -

doesn’t include “ongoing” tasks, which are also factored into the project plan. This is
important when estimating how much time a task will take.)

Project classification. Projects are classified as one of the following. The project plans
divide them into these categories so that we and our sponsors are in agreement with
respect to expectations.

(a) Outreach – HDF workshops, HDF users conferences, face-to-face meetings with
current and potential HDF user

(b) Documentation – Reference Manual, User’s Guide, tutorials

(c) Testing

(d) Performance studying and tuning

(e) Research – try out a feature, write a report, share expertise gained with others.
Outreach is very important in this case. This work may be used later on, but at
this stage we’re just trying to learn and help our sponsor learn.

(f) R&D – Work that we intend to use, if it works out.

(g) Development – Work that we know will be used and must be made to work.
Typically there is a specific user’s need and resources are paid for. It has seemed
convenient to put “development” work into two categories:

• Technology infusion, where the results of a research or R&D project seem
interesting enough to implement.

• Library and tools enhancement. This includes bug fixes and addition of new
features or performance capability.
Tools example: someone needs the h5dump tool to display a certain kind of
data in a different way.
Library example: someone needs to be able to convert integers to floats when
reading from an HDF5 dataset.

Technology readiness. The development of software often occurs in a number of stages,
each subsequent stage corresponding to an increasing level of maturity, completeness,
and robustness. NASA’s Technology Readiness Levels (see Appendix 1) provides a
good frame of reference for thinking about this. Precise levels are not important, but the
concept of readiness is. The TRL document helps remind us of what this means.

 X. Summary of strengths and challenges
The strengths of the HDF project are described in some detail in the previous sections of
this document. A summary of the strengths of the HDF project would include

(a) Emphasis on user support, outreach and high quality documentation.

(b) High quality and diverse staff with good morale and commitment.

(c) Ability to address all aspects of product development, emphasizing
quality control, fast bug fixing and frequent releases, and the ability to
focus on a single product (or two) over a long term.

NOBUGS 2004

HDF Software Process - 18 -

(d) The project sponsors, who provide a high level of support, excellent
user feedback, and broad visibility.

Challenges faces by the project have not been described as fully, and will only be
summarized here. Challenges fall into several categories

(a) The software development team can improve in certain ways.

 i. There is insufficient distribution of expertise: certain areas of
expertise are currently concentrated among too few staff.

 ii. There are communication challenges: the group has to work
continually to achieve adequate communication.

(b) Software development processes can be improved in a number of
ways.

 i. Configuration and porting take a great deal of time

 ii. Although testing is extensive, the amount of testing currently done
is a small fraction of what could and should be done.

 iii. The release processes take great deal of time

 iv. Maintenance takes more resources than the project would like

 v. We would like to do more prototyping

 vi. The need to work well on existing technologies, can make it
difficult to keep up with new technologies

 vii. Supporting parallel I/O in a growing number of environments is
hard.

(c) Usability: many users and potential users have difficulty using HDF.

 i. There is a tradeoff between flexibility and ease of use for casual
users. HDF5 in particular needs to simplify its use.

 ii. Although the documentation is relatively good for free software,
but is still insufficient for many users, given the complexity of
HDF5 and the challenge of using it optimally in any particular
situation.

 iii. There are not enough tools for high level users, especially casual
users who have no previous knowledge of HDF.

 iv. Common tools need to be better able to read, and sometimes write,
HDF4 and HDF5. Also, ways need to be found to convert between
the two HDFs and other common formats that deal with similar
data.

(d) Marketing: the HDF technologies have potential applicability well
beyond its current uses.

 i. More energy should be expended in making HDF known to
potential users.

NOBUGS 2004

HDF Software Process - 19 -

 ii. The project needs to find ways to connect with users and potential
users.

 iii. There needs to be an “HDF book” describing fully the philosophy
behind HDF, the HDF technologies, and the applications that use
HDF.

(e) Viable long-term support: The project has very good support from
certain agencies, but long-term support is not guaranteed.

 i. A business model needs to be developed that will lead to the
sustainability of HDF.

 ii. We need to provide an excellent working environment to retain our
current staff members and attract new ones in order to address the
needs of the HDF user community.

(f) Usability: the software is too hard to use, insufficiently documentation
and tools.

(g) Marketing: the software is inadequately marketed

(h) We don’t to enough prototyping.

(i) System administration: too much of this has to be done by staff, and
half-time sysadmins have not worked out well so far.

1. Biggest areas where we would like to put more resources.

(a) Configuration and build.

(b) Marketing.

(c) Reporting, particularly technical reports and periodic reports to
sponsors.

Acknowledgments
The authors would like to thank all HDF group members for the fruitful discussions that
lead to this paper, especially Bob McGrath for helping with the HDF source statistics and
Frank Baker for securing our victory in “HDF People v MS Word and PDF.”

Appendix – NASA TRL

NASA DEFINITION OF TECHNOLOGY READINESS LEVELS

TRL 1 Basic principles observed and reported

Transition from scientific research to applied research. Essential characteristics
and behaviors of systems and architectures. Descriptive tools are mathematical
formulations or algorithms.

NOBUGS 2004

HDF Software Process - 20 -

TRL 2 Technology concept and/or application formulated

Applied research. Theory and scientific principles are focused on specific
application area to define the concept. Characteristics of the application are
described. Analytical tools are developed for simulation or analysis of the
application.

TRL 3 Analytical and experimental critical function and/or characteristic proof-of-
concept

Proof of concept validation. Active R&D is initiated with analytical and
laboratory studies. Demonstration of technical feasibility using breadboard or
brassboard implementations that are exercised with representative data.

TRL 4 Component/subsystem validation in laboratory environment

Standalone prototype implementation and test. Integration of technology
elements. Experiments with full-scale problems or data sets.

TRL 5 System/subsystem/component validation in relevant environment

Thorough testing of prototype in representative environment. Basic technology
elements integrated with reasonably realistic supporting elements. Prototype
implementations conform to target environment and interfaces.

TRL 6 System/subsystem model or prototype demonstration in a relevant end-to-
end environment (ground or space)

Prototype implementations on full-scale realistic problems. Partially integrated
with existing systems. Limited documentation available. Engineering feasibility
fully demonstrated in actual system application.

TRL 7 System prototype demonstration in an operational environment (ground or
space)

System prototype demonstration in operational environment. System is at or near
scale of the operational system, with most functions available for demonstration
and test. Well integrated with collateral and ancillary systems. Limited
documentation available.

TRL 8 Actual system completed and "mission qualified" through test and
demonstration in an operational environment (ground or space)

End of system development. Fully integrated with operational hardware and
software systems. Most user documentation, training documentation, and
maintenance documentation completed. All functionality tested in simulated and
operational scenarios. V&V completed.

TRL 9 Actual system "mission proven" through successful mission operations
(ground or space)

Fully integrated with operational hardware/software systems. Actual system has
been thoroughly demonstrated and tested in its operational environment. All
documentation completed. Successful operational experience. Sustaining
engineering support in place.

