
Convergence or divergence of Software Tools
R.E. Ghosh

Institut Laue Langevin, B.P. 156 F-38042 Grenoble, France

Abstract
At the first NoBugs, Grenoble 1996, attendees completed questionnaires summarising their
current electronics, systems and software, with modest predictions on the potential changes
envisaged over the following two years.

Today the variety of electronics and systems has been reduced by market forces. Intelligent
data acquisition and data treatment are still far from being integrated. Sophisticated ab
initio modelling computation is performed most easily by acquiring systems matching that
of the developers; network access and client-server tools make these generally available.

There remains today the major problem of dealing with elderly but well-tested legacy
programs, typically running under Unix (now including Linux and Macintosh OS-X),
whilst the current generation of scientists, especially occasional users, would prefer a PC-
Windows solution. Newer applications have taken to the path of using commercial
packages, which offer system independence at a price; this constraint alone is sufficient to
limit community activities due to the costs involved.

The NoBugs meeting is a fine forum to review this problem and discuss guidelines for
directing software development towards a selection of recommended tools.

Introduction
In addition to providing the instruments for use by visiting scientists, large facilities
also support the experiments by offering software to help planning and performing
experiments, and analysing data.

High performance computing allows sophisticated ab initio modelling in advance of
experiments.. The next goal is to integrate some data analysis into the instrument
control to allow optimum use of scheduled experiment time. One rider should be
added here: the experiment is then reduced to a sequence of measurements, and when
unexpected results are obtained, the data quality may be inadequate to allow for any
alternative analysis and interpretation.

Reviewing the range of software tools used in this second phase will be the principal
aim of this presentation. It is however useful to note briefly how high-performance
software is developed and used. The basic hardware comprises fast processors,
memory, and high-speed interconnections. Software is usually compiled using
commercial optimising compilers and liked to well established mathematical libraries
(Lapack, BLAS routines etc.) The scientific packages are typically the result of many
man-years effort; both good physics and mathematical skills are required to make
calculations practicable. The result of this effort is shared with the community, which
can now afford to acquire similar hardware and use precompiled programs.
Commercial software companies, e.g. Accelrys (Cerius, Materials Studio) have seen
the value of a market in providing graphical tools for such packages, greatly reducing
the setting up time for calculations, and providing tools helping the subsequent
analysis. In general the continued development of the underlying calculations
remains a specialist group activity.

Interactive Data Treatment and Analysis
In contrast to the long-running, batch oriented, simulations of systems and
instruments, instrument control and analysis is expected to offer greater interactivity
to the experimenter. Today there are essentially only two types of system. PC-
Windows, and Unix/Linux/Macintosh OS-X. For graphics it is possible in all cases to
run X-window software, however native implementations of graphics using Windows
libraries, or, in the case of Macintosh, the Aqua interface, can offer advantages,
especially in simplifying cut and paste procedures for documents. Although once
guidelines existed on GUI layout and conventions (e.g. the OSF-Motif Style Guide),
today GUI implementations present a jungle of information and tools to the user and
absorb much if not most of current scientific programming effort.

Modules and Interfaces

Clearly defined interfaces and layered functionality simplify the task of the
programmer who only has to understand his own application layer. Conventional
programming languages may be used in any layer. In the past some order was
introduced with the availability of first system, then mathematical and graphical
libraries. These showed the value of re-usable code, exemplified by memory resident
shareable libraries. Languages such as Fortran, C C++ can inter-operate smoothly and
share libraries. The GNU suite of compilers which are available on all platforms
demonstrates this by using a common low-level code generator after pre-processing
by a language specific layer used to parse the Fortran or C code. There is a wealth of
scientific program and library code for these languages.

Most other languages today have been constructed using C and C++. Amongst other
Open Source languages are Python and Java, which offer wrappers to re-use Fortran
and C routines to improve performance in computationally intensive work. This does
require the additional work in implementing variants of an application for each
distinct platform. The basic elements of these languages can be learnt rapidly. GUI
programming using either PC-Windows or X-window can also be performed using
any of these languages. Some version dependence of modules built for Python pose
problems of deploying binaries directly. The characteristics of these source-code
languages can be compared schematically in the diagram below, from the users'
viewpoint in green, and the developers' in blue.

Both Java and Python have common GUI extensions. For comparison C or Fortran
may be launched via a controlling Tk/Tcl script which adds an easily programmable
GUI level to the conventional program code.

Packages

Integrated graphical and calculation packages became available as workstations
evolved especially once the X-window standard was established. These have now
been adapted to PC-Windows, and provide a common platform-independent
programming interface. Scilab and Octave are in the public domain and use a syntax
close to that of Matlab. Scilab includes a large volume of mathematical routines from
well established open source libraries. The commercial offerings Matlab, Igor,
Origin, IDL, PVwave etc. are scripting languages incorporating GUIs. In some cases,
for example IDL, the code is automatically compiled on execution, hence executes
rapidly in repetitive calculations. Others depend on internal routines written in C to
perform numerically intensive tasks. The performance issue has been sufficiently
severe in some cases that, after prototyping a project in Matlab, it has been necessary

to rewrite the calculation in C, and integrate this into the Matlab GUI of the prototype
for production work. The cost per user seat is an important factor which restricts the
building up of a user group where all have the capacity to contribute. The high initial
and ongoing maintenance costs limit the number of copies to specific machines
bearing the licence; run-time executables can be distributes, sometimes at extra cost,
but these remain frozen copies, and cannot benefit from further development.
Commercial pressures also lead to incompatibilities between software updates.
Wrapper code is used to transfer variables in and out from users' routines written in C
or Fortran; this re-introduces platform dependence, and may require using specific
commercial compilers.

Code Complexity
The early years of Fortran programming lead to the development of spaghetti code
which was progressively cleaned when first mathematical routines, and later terminal
graphics were introduced as libraries.

 GUI programming was well stylised by the excellent Macintosh toolkit which
imposed a consistency of design. The multifarious features of X-window and PC-
Windows has left the scientific programmer with a complex toolset, though Tcl/Tk
remains an option as a bolt-on scripting GUI.
The integrated package traverses all levels of software; this has lead again to a rise of
monolithic programming, where much effort is invested in the GUI, and little on new
science. Uniform access to all levels, without notions of application layers has lead to
spaghetti programming within these monolithic programs which effectively resist
sharing future development activities.

The resurgence of Spaghetti code

Federating Experimental Data Treatment and Feedback
These activities used to be performed separately, often using disk files to transfer
information. Packages like Labview showed how it was possible to offer a user
interface which included a flowpath for data evaluation and possible feedback. The
separate packages however remain; users in general do not have access to Labview on
their personal computers, and hence duplication of program effort is necessary. The
result is a general increase of the number of source code incompatible languages used
for data reduction. In general it remains difficult today for an experimenter to include
his personal analysis scheme directly into the sequence of measurements.

Shared Data between Control and Treatment
At the ILL, since 1979 data could be treated from the current measurement typically
by sharing the data files. These were updated periodically by the control program
throughout the measurement. By 1985 this had evolved to sharing data and control
parameters which were held in memory on a single system. With no input or output
to program the treatment could be substantially simplified. With the addition of
workstations at the end of the 80's this concept was extended with simple network
daemons updating memory segments in the distributed workstations. Today, despite
the advances in network technology there lack easy data interchange methods

between, for example, an Excel spreadsheet and a typical control program, except by
file-sharing. Device independent graphics have demonstrated the advantages of
layering applications, enabling newer technologies to be introduced painlessly. The
client-server model would be an elegant way to federate data movement between
intelligent control and treatment. There are not so many packages in general use
which would require an appropriate interface routine. Such a routine could be
extended to include accessing data in archives on remote servers.

Conclusions
Those still programming with traditional techniques re-use extensively libraries of
scientific code and are motivated to adopt modular programming methods.

Packages are proliferating, with no obvious best choice. Inherent limitations often
require extensions typically in C or C++.

The community of facility users is expanding and are likely to use tools drawn from
an even wider range, leading to less sharing of developments and programs. One way
of contributing to minimising this problem is to facilitate data exchange through a
standardised interface capable of functioning in a distributed environment.

