
Choosing an instrument control system for ANSTO
Nick Hauser, *Andy Gotz

Abstract #92

In July 2002, the software development lifecycle for ANSTO’s instrument control system began. Requirements were
gathered from the instrument scientists and their user communities through interviews, a web based survey and a
workshop http://www.ansto.gov.au/ansto/bragg/workshops/comp_report.pdf with internationally recognised invited
speakers. Current solutions in the X-ray and neutron scattering communities were surveyed by visiting a selection of
institutes. It was found that there were pockets of collaboration, but not nearly as extensive as one might expect.

This paper analyses what components are required in a generic instrument control system, describes briefly what the
ANSTO team is implementing and suggests there are benefits to increasing the level of collaboration between facilities.

*European Synchrotron Radiation Facility

Scope
The first step in any engineering project is to propose a
scope of work. The scope of work referred to here was
to provide an instrument control system for the neutron
beam instruments at ANSTO. This scope ends where
data reduction and data analysis begins. This appears to
be an accepted boundary in the neutron and X-ray
community.

Market survey
The next step was to survey the market to see what
control system were already being used. This survey
was easy to conduct because the beam-line control
community is open and helpful. The survey included
visits to six neutron and X-ray facilities in North
America and six in Europe. A report on those visits was
generated with recommendations. The
recommendations were based on
1. Fit for use
2. Development and maintenance effort required per

instrument
 ‘Fit for use’ was based on the experience of the
developers and instrument scientists at the facilities. It
was found that there was a wide variation in the
development effort required, from 3 person months per
beam-line to 5 person years. These numbers were
estimations for developers experienced in the systems,
so an estimate was made to allow for the ANSTO
team’s inexperience with the chosen system. There was
also a wide variation in the learning curve of systems,
from 2 weeks to 6 months per developer.

This was not an exhaustive survey of all available
custom developments and commercial products. There
may be value in compiling such a survey for use in the
data acquisition community to help institute match
products to their requirements. Industries including the
process industry and sciences including astronomy have
mature products for batch control. Whilst solutions may
not come from these market sectors, their ideas may be
useful.

Requirements gathering
Requirements must take into account all major
stakeholders. The requirement gathering process was
designed to gather information from the 3 major

stakeholder groups: instrument users, instrument
scientists (the customer) and management.

1. Web based user survey
The survey focussed on user experiences at neutron
facilities1.
The weaknesses users found with control systems
included long data storage times, new functionality is
difficult to add, poor default settings and poor
integration of multiple computers.
The strengths included system stability, integration of
user supplied ancillaries and user involvement in
software development process.
Users said that system could be improved by
 well tested software
 infrequent changes to software
 fast processing
 modular design
 additional support personnel
 good documented
50% or more of respondents requested
 to be involved in the software development process
 remote (Internet) access to instruments and data

Respondents asked for interface standardisation
between the Australian Synchrotron and ANSTO beam-
line software without compromising either system.

Regarding the human interface, respondents requested
 GUI or GUI and command line
 good defaults
 real time visualisation, reduction and high level

analysis
 standardised component names, commands and

data files
 similar interface for all instruments
 simulation mode for training

2. Data Acquisition Workshop. Users and
instrument scientists
This workshop was a gathering of representatives from
the three major stakeholder groups. The workshop

1http://www.ansto.gov.au/ansto/bragg/2005/comp/anbu
g_survey.html

lasted two days, and was divided into seven sections for
the seven instrument classes being built ie. powder
diffraction, SANS, single crystal, three-axis, residual
stress, polarisation analysis and reflectometer.
35 participants attended. Three overseas guest speakers
were invited to provide their experience in running a
facility and their perspective on solutions. Results of
the market survey and web survey were also presented.
A report2 was generated which was open to participant
review. The conclusions of the workshop supported the
findings of the web and market surveys and added
 reactor variables available to instrument control
 NeXus as the data format
 convert NeXus to other formats
 GUI that guides new users
 user training

3. Management’s requirements
ANSTO’s management required a system that has
 low development cost
 low maintenance cost
 high reliability and availability

Our solution to keep development cost low was to find
an instrument control product that fulfilled most or all
of the essential user requirements. Our solution to
keeping maintenance cost low is a generic system that
can be customised to any instrument ie. a single code
base that can be used to control a reflectometer, SANS,
X-ray powder diffractometer etc. with minimal
customisation. There were several candidates for
system that fulfilled this requirement. Our solution to
high reliability and availability is to keep the system as
simple as possible.

The benefit of spending effort to gather requirements
from the major stakeholders was stakeholder ownership
and feedback from the beginning of the project, before
one line of code was written. The requirements
documentation also provides a clear roadmap for
project management, including determination of feature
priorities, the richness of each feature and project
tracking [1].

The chosen ones
The best fit of the control systems survey to fulfil the
requirements was the SINQ Instrument Control System
(SICS) [2]. SICS has a client-server architecture and is
object oriented.
A high priority user requirement was a graphical user
interface (GUI). Hence the 3 major project tasks are
1. the development of an object-oriented rich-client

GUI codenamed GumTree [3],
2. customisation of the SICS server for our

instruments with the addition of a configuration
database, and

3. Visualisation of data using ISAW [4].
It was envisaged that four products, SICS, TANGO [5],
ISAW and GumTree would fulfil the majority of the
user requirements.

2http://www.ansto.gov.au/ansto/bragg/workshops/comp
_report.pdf

Minimising development effort
To fulfil management’s requirements, it was necessary
to review ways of minimising development cost (effort)
and provide high reliability and availability (quality).
There are three ways proposed to fulfil these
requirements; design patterns, frameworks and
collaboration.

Design patterns
To minimize the code required to control an
instrument, code reuse should be maximized through
the use design patterns [6] and object oriented
programming. Gotz has described the building blocks
for instrument control system for neutron or X-ray
beam-lines [7]. Koennecke has applied object oriented
design principles to build SICS.
We have found that whilst object oriented
programming is naturally applied to instrument control
features, applying design patterns to design an
instrument control system is not a trivial problem [8]
[9]. Some obvious patterns have been used in the
GumTree development, including the Observer (for
efficient communication), Façade (to allow for different
control systems) and Proxy (to provide a simulation
mode) patterns between client and server. The design
of batch control and editing to manage the creation and
control of a command queue was a major challenge.

Frameworks
During the scoping phase of the project, it became
apparent that frameworks have become a widely
accepted tool for accelerating development and
fostering collaboration. Frameworks can reduce the
effort required to develop software by up to 80%. The
Eclipse [10] Rich Client Platform (RCP) was the
framework chosen for the RRR project, and is based on
a plug-in architecture. This architecture allows
extensibility and configurability. It is suggested that
Eclipse be reviewed by the NOBUGS community as a
framework for collaboration.

Collaboration
Collaboration was found to be the most effective way
to reduce development effort. The neutron and X-ray
community are fortunate that source-code sharing
appears to have a precedent in many institutes. The
question that came to mind early in the selection
process was “Why have data acquisition systems been
designed for each neutron and X-ray facility, with many
facilities supporting multiple systems?” The wheel has
been reinvented so many times at significant cost, and
without significant benefit.

Benefits of collaboration
Collaboration fulfils two requirements that ANSTO
users requested, and that we suggest may be
representative of the wider user community
1. User familiarity with interface across neutron and

X-ray facilities – NeXus paradigm
2. Better quality software. Tested across instrument

classes and across facilities

It also fulfils the intent of NOBUGS - New
Opportunities for Better User Group Software.
Resources can be released to explore new opportunities
and exciting features for interacting with devices and
data that are available now and are waiting to be
implemented including
 Speech recognition and synthesis
 Intelligent instrument control (requested by NeSSI)
 Virtual reality (3D rendering of instruments and

data)

Most facilities have limited resources for software
development and would like to provide better service
for users.
Increasing collaboration will require that you put effort
into dealing with your collaborators. The benefit will be
leveraging human resources, development, testing and
support.

Collaboration and personnel
In general, the development teams for these products
are small, and often one person is responsible for many
beam-lines. The developers often have to be generalist,
and will always be limited by their skill-set.
The developers are expected to do everything in the
development lifecycle, including testing and support.
This mixing of roles is not acceptable in most software
engineering philosophies. Collaboration allows
developers, tester and support staff to fulfil roles that
best fit their skill-set and interests.

Collaboration and requirements
Requirements are similar from facility to facility. The
authors believe that for requirements and
implementation, there are more similarities than
differences [7]. The overarching requirement is that
users can do science easily and reliably.
Even where there are differences, the same software
solution can be applied eg. remote access to
instruments, network free solutions, large data volumes.
The solutions need to be modular and extensible to
allow features to be added or hidden easily.

Championing collaboration
Data analysis has NeSSI to champion collaboration.
Data formats have NeXus. The data analysis
community has NOBUGS.
There is an opportunity for data acquisition people to
increase the scope of collaboration. This would require
that the NOBUGS community becomes more active.
Does collaboration require that data acquisition
software converges to a singular solution?
No. This would stifle innovation. However, there
should be a focussing of effort, and this requires a
reduction of the number of solutions supported, or an
increase in the numbers of developers.
Does collaboration require that I retire my current data
acquisition solution and use another?
No. The authors suggest that instrument control
systems, like any software solution, have a finite
lifetime. It may not be a requirement for you to address
the question now because you have a stable system that

addresses your user requirements. We propose here that
when it comes time to upgrade your system, or to build
a new system, that you investigate what already exists
rather than developing something from scratch, and that
you take into account GUM theory [7]

Existing collaborations
Collaboration exists and the numbers are growing.

NeXus is being adopted by many neutron facilities
Inter and intra facility collaboration for instrument
control systems includes:
EPICS, TACO/TANGO, SPEC, Labview, MX, SICS,
ISAW

These grouping should actually be made on the grounds
of facilities with similar user requirements rather than
technologies or solutions.

It is interesting to consider the ‘global’ user. She
probably uses NeXus. She visits neutron and
synchrotron facilities on three continents. She would
like to use a diffractometer in Europe with a user
interface that is the same as the one in the US. What is
the list of her requirements?

Forum for collaboration – licensing, open
source, shared source, mailing lists and e-
notebooks
Would merely open-sourcing developments lead to
greater collaboration? We believe that the community
should ensure that their code is licensed in a way that
aids collaboration eg. GPL (GNU public license) and is
made available to the wider community through an
easily accessible open-source repository like
SourceForge. The existence and scope of the product
could be announced to the NOBUGS community
through Argonne’s neutrons mailing list. Overview
documentation should be made available so that the
community can browse information efficiently to find
what is available.
The SNS have created e-notebooks for data reduction
and data analysis working groups and we propose that a
similar notebook be created for data acquisition.

Conclusions
Choosing an instrument control system is not a trivial
effort. It is a major software engineering exercise that
includes requirements gathering, market survey,
collaboration, recruitment of personnel, system
development and testing. Increased collaboration and
the use of frameworks such as Eclipse were proposed
as methods of reducing effort required developing and
maintaining an instrument control system and will lead
to higher quality software. Open-source and e-
notebooks were proposed as methods to share source-
code and documentation.

References
[1] PV. Hathaway et al. An Integrated and Agile

Approach to Delivering Extensible Instrument
Control System Software. NOBUGS 2004.

[2] M. Koennecke. SICS Homepage,
http://lns00.psi.ch

[3] T. Lam et al. GumTree Project Homepage,
https://sourceforge.net/projects/gumtree

[4] T. Worlton et al. New Software for Neutron
Scattering Data Visualization. Neutron News Vol
15, Issue 3

[5] A. Gotz et al. TANGO Homepage,
http://www.esrf.fr/computing/cs/tango/tango.html

[6] E. Gamma et al. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison
Wesley 1995.

[7] A. Gotz et al. Grand Unified Model for Control
Systems – GUM. NOBUGS 2004.

[8] T. Honkanen. Design Patterns in Automation.
Postgraduate Seminar on Information Technology
in Automation. Helsinki University of Technology.
2002.

[9] W. Nartz. Design Patterns for Process Automation
Systems. University of Linz. 2000.

[10] Eclipse www.eclipse.org

