

1

General features of the neutron instrument
simulation package VITESS

K. Lieutenanta*, G. Zsigmondb, M. Frommea, S. Manoshina

aHahn-Meitner-Institut Berlin, Glienicker Str. 100, D-14109 Berlin, Germany
bPaul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

Abstract
Version 2.5.1 of the software package VITESS that simulates neutron scattering instruments
is introduced. The concept of VITESS including data handling and piping is explained.
Particular emphasis is given to the use of tools, the options to run several simulations in a
series and to split and stop the instrument simulation. General features like ray-tracing and
the possibility to stop the simulation without loss of data are described. The role of examples
as a starting point for users and for tests of the package is discussed.

Key words:
MC simulation; neutron scattering, instrumentation

*Corresponding author:
Klaus Lieutenant, Hahn-Meitner-Institut Berlin, Dept. SF1, Glienicker Str. 100, D-14109 Berlin, Germany
email: lieutenant@hmi.de, phone: +49-30-8062-3076, fax: +49-30-8062-3094

1. Introduction

Scientific experiments on neutron scattering instruments generally are more expensive than
those on most other instruments. Therefore, sophisticated instruments have been developed
that make efficient use of neutrons. This development was strongly supported by the use of
Monte Carlo programs which simulate the behaviour of neutrons from the moderator to the
detector. Nowadays, every new instrument is simulated intensively before its construction
and also changes on existing instruments are first simulated.
During the last years, several packages that simulate neutron scattering instruments have
been developed, such as NISP [1], RESTRAX [2], McStas [3], VITESS [4] and Ideas [5].
Their reliability has been proved in a comparison of simulations [6]. Here we present the
package VITESS (Virtual Instrumentation Tool for the ESS) with emphasis on questions of
software design.

2. History and present status of VITESS

VITESS has been developed since 1998. Version 1 was released in 1999 and version 2.0
containing polarization, absolute flux values and an improved GUI in June 2001. Since
September 2004, version 2.5.1 an upgrade of version 2.5 is available. The first modules were
written by C. Guy, J. Stride, G. Zsigmond, F. Streffer and D. Wechsler. Now the development

2

is continued by K. Lieutenant, S. Manoshin and G. Zsigmond. M. Fromme was responsible
for the graphical user interface and the releases all the time.
The package was initiated by F. Mezei who had the idea to realize a package that is well
suited to simulate instruments on neutron spallation sources. As planned, it was used to
perform several simulations for the ESS instrument suite [7-9]. In the meantime it is used all
over the world for all kinds of sources and instruments. Until October 2004, more than 370
different people have downloaded the instrument.
VITESS is written in C and can be run on Windows, Unix and Linux computers. It is free of
charge. It is easy to handle because it can be used without changing any code or using any
script or meta-language - in contrast to other packages. But each user can also write and use
his own modules. It has its strengths in a well-developed suite of polarization and time-of-
flight modules. VITESS has been supported by the network SCANS (Software for computer
aided neutron scattering) in FP5 and is now supported by MCNSI (Monte Carlo simulation of
neutron scattering instruments) in FP6.

3. Concept and general features of VITESS
Figure 1 shows the concept of VITESS. Each component in an instrument is represented by
one module. The modules are delivered as executables for the various platforms. The
executables run independently in a pipe. This piping concept reduces the necessary memory
for a simulation. On the other hand it allows fast calculations.
Properties of the component are either transferred as parameters to the module or read from
a parameter file. In both cases, the user of the program enters these data via a graphical
user interface (GUI, cf. Fig. 4 or 6). This is a Tcl/Tk application (cf. http://www.tcl.tk).
Each module writes position and orientation of (the end of) the component into a file named
'instrument.inf' (see Fig. 2). In this way, information about the instrument as a whole is
collected. This will be used for an instrument drawing in the next version.

source module 2 module n

I(t)

graphical user interface

monitor

param. file

instrument.inf

param.file

parameters parametersparametersparameters

sim_data

log_file

source module 2 module n

I(t)

graphical user interface

monitor

param. file

instrument.inf

param.file

parameters parametersparametersparameters

sim_data

log_file

Figure 1: Concept of the VITESS program

The source module creates neutron packages defined by position, divergence, spin,
wavelength, (initial) time and count rate sampling the possible trajectories. All independent
parameters are defined by Monte Carlo choices within ranges given by the user. This

3

parameter set changes during the 'flight' through a component. The values at the end of each
component are transferred to the following module. In this way, the trajectory through the
instrument is calculated. In a mathematical sense, each neutron package is a random event;
in VITESS these events are called 'trajectories'.
Some modules write information in a reduced form into a file, e.g. count rate as a function of
time, (see Fig. 1). The whole information (complete parameter sets of all trajectories) can
either be written into a binary file by the last module ('sim_data' in Fig. 1), or at any point of
the instrument into an ASCII file by using the module 'writeout'.

Figure 2: File 'instrument.inf' that collects information about the whole instrument (Here: SANS
instrument at HMI)

4. Survey of modules and examples

4.1 Modules
Version 2.5.1 contains 28 modules representing hardware including 7 sample modules, 7
modules for treating polarization and 5 modules for monochromating components. There are
9 additional modules; they are needed to visualize data: the monitor modules display
intensity or polarization as a function of one or two parameters like time, wavelength, vertical
position etc. The module 'visual' enables visualisation of trajectories during the run. Two
modules ('eval_elast' and 'eval_inelast') allow a first data evaluation, e.g. showing intensity
as a function of scattering angle. The module 'frame' allows various kinds of changes of the
co-ordinate sysem and thus enables the simulation of geometries which were originally not
planned, e.g. a simulation of a bender that is curved in a vertical plane.
Additionally, there is a module called 'external command' which can be used by any user to
include modules written by himself. A detailed description of the existing modules is given
elsewhere [10-11].

4.2 Examples
Examples are an essential part of the package. 12 different example instruments installed on
all kinds of sources are delivered with the package. They can be used by users as a starting
point for their own simulation.
On the other hand, these simulations are reference simulations to check the validity and the
speed of simulations with new versions of the program. Therefore we have tried to include
each module in at least one example, (not fully realized yet.)

4

5. Tools

AsciiToBinary ChopSystem

GenerMirrorFile CrysAnalySpec

GenerateBatch

Direct View

DefineDirection

LatticeDist.

ChopPhases

GenerSurfFile

StdDeviation

DistTimePlot

VisualOutput

Generation of
input files or
input data

Transformation Visualization and
evaluation of
(output) data

Design of
instrument
components

AsciiToBinary ChopSystem

GenerMirrorFile CrysAnalySpec

GenerateBatch

Direct View

DefineDirection

LatticeDist.

ChopPhases

GenerSurfFile

StdDeviation

DistTimePlot

VisualOutput

Generation of
input files or
input data

Transformation Visualization and
evaluation of
(output) data

Design of
instrument
components

Figure 3: Survey of tools in VITESS

Since version 2.2, VITESS contains tools. They are used to generate input files, to calculate
or check input data or to visualize results. The tools existing in version 2.5.1 are displayed in
Figure 4. Most of them use a command shell to collect input data (e.g. 'GenerateMirrorFiles',
'AsciiToBinary'). Others operate with Tcl/Tk windows as the main program (e.g.
'DesignChopperSystem', see Figure 4).
'AsciiToBinary' transfers an ASCII output file as it is created by the module 'writeout' into a
binary file that can be used as input for the simulation (cf. section 6.1)
'GenerateMirrorFile' creates reflectivity files of coatings used in neutron guides. They are
used in the modules 'guide' and 'bender'. 'GenerateSurfaceFiles' generates files that contain
information about the geometry of a bender.
'LatticeDistances' creates the input file for a powder-sample from atomic properties, but at
the moment only for crystals having FCC lattice.
'ChopPhases' calculates the initial phase of a chopper (in a certain distance to the
moderator) needed to let a neutron of a certain wavelength pass. 'DesignChopperSystem'
additionally calculates the optimal chopper aperture for a frame overlap chopper and the
usable evaluation time (and the corresponding wavelength range) at the detector (see Fig.
4).
'DirectView' checks if a bender is long enough to prevent direct view of neutrons through a
system straight guide - bender - straight guide.
'CrystalAnalyzerSpectrometer' calculates the set-up of a crystal analyzer spectrometer [12].
'GenerateBatch' creates a batch file to perform several simulations one after the other. This
feature is now realized by the option 'series of simulation' (cf. section 6.3), which is more
convenient in its use. Therefore, 'GenerateBatch' will be removed soon.
'DefineDirection' transforms vectors between different co-ordinate system definitions:
Cartesian - Spherical - Euler and performs vector rotations.
'VisualOutput' uses a binary or ASCII output file of a VITESS simulation ('sim_data' in Fig. 1)
to create several figures: Intensity as a function of wavelength, ….
'StdDeviation' calculates the integral, average value and standard deviation of an intensity
distribution, e.g. position, width and intensity of a peak.

5

'DistTimePlot' creates a figure time-of-flight vs. flight path. This is useful to visualize chopper
systems.

Figure 4: Window of the tool 'DesignChopperSystem'

6. Special features

6.1 Splitting the instrument simulation
As the whole information of all trajectories can be written into a file (cf. section 3), the
simulation can easily be split: the last module of the first part writes this information into a file,
and the first module of the second part reads it as input. Thus, the file replaces the 'source'
module. As input file a binary file is necessary, but this can easily created from an ASCII file
by the tool 'AsciiToBinary' (see section 5). As the parameter set of one trajectory has a size
of about 0.1 KByte (in ASCII format), this file can be very large. Therefore, it is reasonable to
split after several modules, where the number of trajectories is already decreased.
Performing the first part of the instrument only once with a high number of trajectories and
then running the second part many times (e.g. for different sample orientations) can save a
lot of time.

6.2 Stopping the simulation
The simulation can be stopped without loss of data. The principle is shown in Fig. 5: After
each generation of a new trajectory, the source module checks if an interrupt flag has been
set. In this case the creation of new trajectories is stopped. But all trajectories already
created will be processed by all modules. Therefore a correct simulation (with a lower
number of trajectories) is performed.
The only difficulty is that the calculation of absolute flux values is wrong because the
contributions of the remaining trajectories are missing. But this can easily be corrected
through multiplying by a factor Nplanned/Nstarted.

6

source module 2 module n

I(t)

graphical user interface

monitor

param. file

instrument.inf

param. file

sim_data

STOP

log_file

source module 2 module n

I(t)

graphical user interface

monitor

param. file

instrument.inf

param. file

sim_data

STOP

log_file

Figure 5: Stopping the simulation without loss of data by 'Soft abort'

6.3 Series of simulations
Since version 2.5 a new option to run a series of simulation is implemented. The series can
be defined and started from the graphical user interface. The handling is much more
convenient than the previous solution.

Fig. 6: Window for series of simulations including table of variable parameters. (Here variation of free
flight path in a SANS experiment.)

7

The number of simulation is demanded and the parameters to be changed are defined by
just clicking on the item names on the GUI window. Then each variable parameter has to be
given in a table for each simulation (s. Fig. 6). If no value is given, the value of the original
instrument is used. The same holds for all other parameters.
All files that shall be saved have to be given. After the simulation, they are copied to a target
directory with a different prefix (of the file name) for each simulation. The option 'step
selection' (see Fig. 6) allows to start only some of the simulations. The whole information
about the series is saved with the instrument.

6.4 Ray-tracing options
Altogether there are 3 possibilities to check the proper behaviour of single trajectories (e.g. in
case of possible errors). The first is to use the module 'writeout' (at different instrument
positions). The parameter sets can be compared and the behaviour of certain trajectories
studied.
This procedure is made easier by the ray-tracing option 1 as shown in Fig. 6. In a first run the
trajectories that shall be observed are defined, e.g. by using the module 'writeout'. If the run
is restarted (in ray-tracing option 1), identical trajectories are created. The only difference is
that every trajectory whose ID is found in the 'ray-tracing file' is marked to be observed and a
file is opened for each of them. Now each module writes position, divergence, etc. at
entrance and exit of the component into this file.
In a second option, only those trajectories whose ID is found in the file are started in the
second run. As the ID of every trajectory is checked after the definition of the parameters by
MC choices, the initial parameter values of these trajectories are the same as in the first
simulation. Thus, the simulation is identical up to a module that uses MC choices. In this
module, the sequence of random numbers is redistributed and the simulation runs into a
different direction.

The ray-tracing function interprets the first column of the ray-tracing file as list of IDs and
does not care about the rest of the file. Therefore, such a file can also be written by hand or
any program. Using a file written by 'writeout' is just for convenience.

Source

Module x

Writeout data

Source

Module x

Writeout data

Ray-
tray
cing
file

Ray-
tray
cing
file

Ray-
tray
cing
file

Ray-
tray
cing
file

Run 1 Run 2

Source

Module x

Writeout data

Source

Module x

Writeout datadata

Ray-
tray
cing
file

Ray-
tray
cing
file

Ray-
tray
cing
file

Ray-
tray
cing
file

Run 1 Run 2

Figure 7: Ray-tracing option 1: writing a data file for each trajectory of interest

8

Source

Module x

Writeout data_1

Source

Module x

Writeout data_2

Run 1 Run 2

106 traj. 103 traj.Source

Module x

Writeout data_1

Source

Module x

Writeout data_2data_2

Run 1 Run 2

106 traj. 103 traj.

Figure 8: Ray-tracing option 2: starting only trajectories of interest

7. Outlook

The next version will contain an improved detector module, a drawing of the instrument and a
tool to find appropriate chopper positions. We also plan to include numerical optimization of
instrument parameters into VITESS. Several tests have run well, now we have to find a way
to include this in a user-friendly way. Another goal is to realize a more flexible program, e.g.
get rid of limitations for number of bins etc. This has already been started and will be
continued.
One important task within the MCNSI project is to implement the NeXus data format into
VITESS. After some preliminary work, this will be realized this autumn.
Within the MCNSI network, we will take part in code comparison and virtual experiments.
While the first code comparison [6] could not be cross-checked by an experiment, this will
done with the following comparisons. Now that we are able to simulate an instrument
including scattering at a sample and detection, we are not far from the final goal - virtual
experiments. Users of neutron facilities should be able to perform a 'virtual experiment' on a
computer before they start measuring in order find the best instrument parameters and
estimate the measuring time. For a first instrument, this will be done soon in parallel with
other packages (supported by MCNSI).
To be able to do that for all existing instruments, we need to complete our set of modules. A
sample 'collimation grid' and an 'elliptic mirror' are nearly completed. A 'magnetic hexapole'
has already been demanded by users. Additionally, sample modules for radiography and
residual stress measurements are missing. Furthermore, a more realistic sample simulation
including parasitic Bragg reflection, multiple diffraction and thermal diffuse scattering should
be realized in the future.

Acknowledgement

This research project has been supported by the European Commission under the 6th
Framework Programme through the Key Action: Strengthening the European Research Area,
Research Infrastructures. Contract n°: RII3-CT-2003-505925.

9

References:
[1] L.L. Daemen, P.A. Seeger, R.P. Hjelm, T.G. Thelliez, Proc SPIE 3771 (1999) 80-89;

http://strider.lansce.lanl.gov/NISP/Welcome.html
[2] J. Šaroun and J. Kulda, Physica B 234-236 (1997) 1102-1104; http://omega.ujf.cas.cz/restrax/
[3] K. Nielsen and K. Lefmann, Physica B 283 (2000) 426-432; http://neutron.risoe.dk/mcstas/
[4] G. Zsigmond, K. Lieutenant, F. Mezei, Neutron News 13 No. 4 (2002) 11-14;

http://www.hmi.de/projects/ess/vitess/.
[5] W.-T. Lee, X.-L. Wang, J.L. Robertson, F. Klose, Ch. Rehm, Appl. Phys. A 74 [Suppl.] (2002)

S1502-S1504; http://www.sns.gov/ideas/.
[6] P.A. Seeger, L.L. Daemon, E. Farhi, W.T. Lee, X.L. Wang, L. Passell, J. Saroun, G.

Zsigmond, Neutron News, 13 No. 4 (2002) 24-29.
[7] H. Fritzsche, K. Lieutenant, J. Neutron Research 11, No. 1-2 (2003) 61-68
[8] G. Zsigmond, J. Rodríguez-Carvajal, P.D. Radaelli, K. Lieutenant, F. Mezei, Proc. ICANS-XVI,

Eds. G. Mank and H. Conrad (Düsseldorf, Germany, 2003) 541-547.
[9] K. Lieutenant, T. Gutberlet, A. Wiedenmann, F. Mezei, Nucl. Instr. Meth. A, submitted for

publication
[10] G. Zsigmond, K. Lieutenant, S. Manoshin, M. Fromme, F. Mezei, Proc. ICANS-XVI, Eds. G.

Mank and H. Conrad (Düsseldorf, Germany, 2003) 473-482.
[11] K. Lieutenant, G. Zsigmond, S. Manoshin, M. Fromme, H. N. Bordallo, J. D. M. Champion, J.

Peters, F. Mezei, Proc. of the "International Symposium on Optical Science and Technology"
(Denver, 2. - 6. Aug. 04), submitted for publication

[12] J. M. Carpenter, E.B. Iverson, D.F.R. Mildner, Nucl. Inst. Meth. Phys. Res, A 483 (2002) 784 -
806.

