
Computing Developments at Hasylab

Th. Kracht

Hamburger Synchrotronstrahlungslabor HASYLAB at DESY

Notkestr. 85, 22607 Hamburg, Germany

October 4, 2004

Abstract

Spectra is the program for instrument control and
data acquisition at Hasylab. This note describes the
improvements since the previous Nobugs workshop.

Much work went into the upgrade of the graphi-
cal user interface, which is written in PerlTk. This
was a natural choice, since Perl serves as the Spectra
scripting language. All of the standard online ap-
plications, those which are of use at all beam lines,
are supported by widgets now. In the meantime the
development of GUIs that are customized for special
experimental technique has started.

Another important issue is the upgrade of the Spec-
tra server capabilities. Currently multiple clients can
be served in an interactive session and Spectra is pre-
pared to run as a detached process that listens con-
tinously to service requests from various sources.

1 Introduction

At Hasylab a standard online system has been devel-
oped. It is implemented at 21 end stations and some
test setups. In the meantime the Hasylab system has
been ported to other locations (Uni Dortmund, Uni
Aachen). It supports measurements in various fields,
including material science, hard condensed matter,
interfaces and surfaces, environmental science and
soft condensed matter.

The next section of this note gives a short overview
of the Hasylab online system. It is followed by a
discussion of the Spectra - Perl interface. The last

Keyboard Perl Client

Inputs

Spectra

CLI PerlXS Socket API

Interpreter
Arithmethics
Disc I/O

Device Library

Data Busses

GPIB CanBus RS232TCP/IP

Utilities

C Code

The Hasylab Online System

VME

Graphics: X11, PS

Figure 1: The Hasylab Online System

section describes the improvements of the GUIs and
the upgrade of the server mode.

2 The Hasylab Online System

Linux PCs serve as our experiment computers. They
are coupled to VME, GPIB and CanBus via PCI
adaptors, avoiding any network overhead during data
transfers to these busses. Ethernet connections

1



via TCP/IP sockets become increasingly important.
They are mostly used for the communication with de-
tector hardware or between computers. Serial lines
are still needed. They are provided by terminal
servers.

Most of our end stations are equipped with an ad-
ditional Windows PC, offering our guests the oppor-
tunity to run pre-analysis applications that have been
developed for this platform.

The experiment PCs are backuped each day by the
TSM system which is provided by the Desy-central
IT group. It allows a disk restore after hardware fail-
ures and also single file restores by users. The Linux
PCs have a link to the dCache which is the front end
to the Desy mass storage. The dCache has been de-
veloped for the high energy physics experiments and
offers our users virtually unlimited storage space. In
general data are transfered across the network to the
home institutes of our guests. But there is also a
public DVD/CD recorder that is accessible from all
experiment computers.

The program Spectra is used for experiment con-
trol, data acquisition and online monitoring [1], [2]. It
consists of an interpreter, an interface to the device
library, graphics routines (X, Postscript), disk I/O
functions, a comprehensive list of command verbs and
an interface to Perl/PerlTk [3]. In addition there is
an application programmers interface. The Spectra
components are displayed in figure 1.

The device library provides the interface to the
electronic equipment. Motors, timers, counters,
ADCs, MCAs, etc. can be accessed in a generic way,
hiding the module specific features from the user.
Stepping motors can be operated individually or as
composite devices (monochromators, diffractometer
angles, slit systems). The device library is constantly
updated whenever new hardware has to be installed.
The aim is to standardize the electronic system. It
is achieved by generating a list of supported devices,
which are recommended for hardware upgrades or for
new experiments.

A web interface to the online resources allows beam
line scientists to control the running experiments.

Spectra is very flexible. The identical code runs at
all the mentioned end stations. Those features that
are beam line specific are configured in a startup file

The Spectra - Perl Interface

Perl Interpreter

(persistent)

Perl Scripts

Functions, Data

TkI (PerlTk GUI)

Spectra

Functions, Data

Perlembed PerlXS

Figure 2: The Spectra - Perl Interface

and inside scan macros.

3 The Spectra - Perl Interface

Using Perl as the scripting language means that two
interfaces had to be implemented: Perl → Spectra
and Spectra → Perl. The first direction (Perl →

Spectra) has been programmed in the PerlXS frame-
work [4]. All online functions had to be mapped into
Perl and also the Spectra internal data structures had
to be made accessible from Perl. Details can be found
in [5]. The purpose of the Perl → Spectra interface
is obvious. This might not be the case for the other
direction: Spectra → Perl. It is needed by the graph-
ical user interface which has been written in PerlTk.
Consider that a stepping motor is moved by a wid-
get. The widget passes an appropriate move com-
mand via PerlXS to Spectra, which executes the move

2



synchronously. That means it returns control to the
widget after the move completed. This procedure is,
as it has been explained so far, not acceptable, since
the user wants to observe how the move proceeds. In
other words: the widgets containing the motor posi-
tions have to be updated regularly and also the wid-
gets that display status information like ”Moving”,
”Stopped”, ”Doing backlash”, etc. The update pro-
cedure has been implemented in the following way:
Spectra (C code) starts the motor movements and
while the motors are in motion it calls the PerlTk up-
date procedure (Perl code). This is one place where
the Spectra → Perl interface comes into action. Fig-
ure 3 displays the relations.

Perl scripts that make use of Spectra features are
always executed within a Spectra session. They are
invoked from the command line or from other Perl
scripts. Otherwise the execution of a single script
would correspond to a complete Spectra session, in-
cluding the overhead that is involved by the startup
and exit procedures: loading the device list, checking
motor positions, maintaining log files, etc. The other
important reason for running scripts as part of the
Spectra session is performance: the Perl interpreter
is loaded only once. It happens before the first Perl
script is executed. The following scripts are executed
by the persistent interpreter.

4 The Graphical User Inter-

faces

Perl was chosen to be the scripting language for Spec-
tra. Consequently, the graphical user interface is
written in PerlTk. It is named TkI - the Tk interface.

The standard applications, like stepping motor
alignment, scanning procedures, crystal orientation,
MCA measurements, etc. are well supported by wid-
gets.

The main TkI widget is displayed in figure 3. It
shows the list of motors and a log window for infor-
mational messages. At the top of the main widget a
menu bar can be found which allows the user to start
scans, work with the diffractometer, set different op-
tions or invoke miscellaneous applications.

A double-click on one of the motor names starts
the motor alignment widget, see figure 6. It displays
a signal while the motor is moved. The motor can be
moved to an absolute position, it can be moved step
by step or it can be moved with a slider bar. The slew
rate can be reduced and the window limits can be
narrowed in order to do efficient peak searches. Both
parameter changes have only a temporary effect. The
original values are restored when the widget exits.

Another important widget is the general scan
menu, see figure 6. It can be used to scan the en-
ergy, motors, slits or even a dummy motor. This
doesn’t actually move any hardware, instead it can
be thought of as a time scan.

There is a special option for energy scans: EXAFS.
If selected, the scan points are defined by a list of
regions, all having different step width and sample
time.

The measurement that is carried out during a scan
is specified with an extra widget. It is displayed in
figure 6. On the left hand side the user may specify
the timer and counters and whether the counter con-
tents are displayed during the scan or just written to
the output file.

In the mid part of the widget the user may chose
MCAs and define regions of interest (SCA) within
the MCAs. The contents of the regions of interest
are displayed like counters. If MCAs are selected, the
output files are written to an extra directory. This
feature has been implemented, because MCA scans
produce a lot of output files.

On the right hand side of the select scan device
widget virtual counters are introduced. A virtual
counter is a piece of Perl code that replies to two
methods: reset and read. It is left to the user what
is done, when these methods are invoked. Upon re-
turn from the read method Spectra expects that some
number is returned. It is treated like a counter read-
ing. The virtual counters have been implemented for
those devices that are used rarely or for tests of new
hardware.

In addition to these standard widgets other appli-
cations have been developed that are customized for
special techniques: standing waves, diffraction, 3D
scans, etc. It is expected that more experimental
methods will be supported by dedicated widgets.

3



5 The Server Mode

Since long Spectra was able to serve external clients.
This operation mode was intended to be used by our
guest groups who operate own equipment. They are
mostly interested in using the experiment computer
as a front end to the monochromator or slit systems.
So far Spectra served these clients synchronously, al-
lowing for one input source only. If a client was con-
nected to an online session, control was given to it
exclusively. Command line control resumed after the
client disconnected.

Spectra is now able to serve multiple clients while
the session remains active for the user. The asyn-
chronous server mode is entered by creating a thread
that waits for client connections. A client can con-
nect at any time to an active Spectra session. After
a client connected, the thread re-enters the accept
state.

Although there may be several input sources, i.e.
clients or the active user, there is no parallelism.
Command execution is serialized. A new command
can only be executed, after the preceding command
finished. For fast interactions, like counter readings,
this is not a problem. But motor movements may
last for a considerable amount of time, during which
the other input streams are blocked. This problem
can be overcome by splitting a movement into several
pieces which are quickly executed: setup-move, start-
move and repeated check-moving. In between these
pieces other clients can be served. It is entirely up
to the user to configure procedures that are well be-
haved. The user is also responsible for avoiding race
conditions: if some hardware receives contradicting
commands from various clients, the last client wins.

Spectra serves clients at well defined points:

• During read-keystroke wait states.

• During timer wait states.

• During scans, before the measurements are per-
formed.

• During MCA wait states.

• The TkI has a timer and a time-out service func-
tion installed. On timer expiration this function

checks for client commands and executes them.

The projects to come (VUV-FEL, Petra-3) require
Spectra to run detached from an interactive user, the
daemon mode. The daemon will be installed on an
extra beam line PC which gives the experiments at
these new facilities common access to certain beam
line components like: monochromators, mirrors or
absorbers. One experiment will be in charge, i.e. it
has the right to change the setup. The others will
be given read access only. The daemon mode is close
to the asynchronous server mode with the addition
that the daemon starts during the boot procedure of
the PC. An important issue for the daemon is the
verification of the stepping motor positions (absolute
position encoders are installed only for a small frac-
tion of the stepping motors). In the past users were
prompted what to do when Spectra detected differ-
ences between the stepper controller registers and the
device list (The device list is a disc file, which is cre-
ated when Spectra exists). These differences can be
due to trivial reasons like re-powering the VME crate,
or they may indicate hardware failures or corrupted
log files. However, a Spectra daemon has to find the
correct motor positions on its own. The decision is
made upon the exit state of the preceding Spectra
session, the actual values in the controller registers,
the device list and other log files. This procedure has
just been implemented also for interactive sessions.

6 Conclusion

In summary the concept of choosing Linux PCs as the
central part of the Hasylab beam line control system
has proven to be successful. The Perl and PerlTk in-
terface to the online program Spectra has been con-
siderably extended, making graphical user interfaces
now available not only for the standard procedures,
but also for customized, beam line specific applica-
tions. The server capabilities of Spectra have been
improved. If required, the program can now run as
a detached process, answering requests from multiple
network clients.

4



References

[1 ] www-hasylab.desy.de/services/computing/spectra/spectra.html

[2 ] www-hasylab.desy.de/services/computing/online/online.html

[3 ] www.perl.com

[4 ] www.perldoc.com

[5 ] www-hasylab.desy.de/services/computing/perl spectra/perl spectra.html

5



Figure 3: The Main TkI Widget

6



Figure 4: The Motor Alignment Widget

Figure 5: The Scan Widget

7



Figure 6: The Select Scan Devices Widget

8


