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Characteristics of
Highly Enriched Uranium
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Global Distribution of Civilian HEU
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Number of Countries
with Research Reactors
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The Conversion of Research
Reactors to Low-Enriched Fuel

Fundamental element: development of high-density fuels
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Effective Uranium Densities
in Research Reactor Fuels
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Country IAEA Code Name Criticality Power Enrichment HEU Demand

USA US-0070 ATR 1967/07 250 MW 93% 120–175 kg/yr

USA US-0137 HFIR 1965/08 85–100 MW 93% 91–150 kg/yr
Russia RU-0024 SM-2 1961/10 100 MW 90% 43–110 kg/yr

China CN-0004 HFETR 1979/12 125 MW 90% 75 kg/yr

Russia RU-0013 MIR-M1 1966/12 100 MW 90% 62.2 kg/yr

Kazakhstan KZ-0003 EWG-1 1972/01 60 MW 90% ?

France FR-0017 HFR 1971/07 58.3 MW 93% 54.8 kg/yr

Germany DE-0051 FRM-II 2004/03 20 MW 93% 40.5 kg/yr
Netherlands NL-0004 HFR 1961/11 45 MW 93% 38.3 kg/yr

Belgium BE-0002 BR-2 1961/06 80–100 MW 74–93% 29 kg/yr

USA US-0204 MURR 1966/10 10 MW 93% 23.5 kg/yr

Germany DE-0006 FRJ-2 1962/11 23 MW 80–93% 19.2 kg/yr

Poland PL-0004 MARIA 1974/12 17–30 MW 36–80% ?

France FR-0022 ORPHEE 1980/12 14 MW 93% 15.8 kg/yr
Russia RU-0008 WWR-M 1959/12 18 MW 90% 3.7–14.4 kg/yr

Ukraine UA-0001 WWR-M 1960/12 10 MW 36–90% 13.9 kg/yr

USA US-0126 NBSR 1967/12 20 MW 93% 13 kg/yr

South Africa ZA-0001 SAFARI 1965/03 20 MW 87–93% 12.6 kg/yr

USA US-0120 MITR-2 1958/07 5–10 MW 93% 12 kg/yr

Romania RO-0002 TRIGA-2 1979/11 14 MW 20–93% 11.8 kg/yr

Russia RU-0010 IVV-2M 1966/04 15 MW 90% 3.5–9 kg/yr
Kazakhstan KZ-0002 IGR 1961/01 10 MW 36–90% ?

Australia AU-0001 HIFAR 1958/01 10 MW 60% 8.1 kg/yr

Russia RU-0014 IRT-T 1967/07 6 MW 90% 5.6 kg/yr

Russia RU-0004 IR-8 1981/08 8 MW 90% 2.2 kg/yr

HEU-Fueled Research Reactors
(Highest Relevance Group, 2006)

shutdown

converted

Some neutron scattering

Neutron scattering, primary use
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Footnote: *Pulsed Reactors

Core inventory: 82.5 kg enriched to 98%

Example: IBR-2 in Dubna, Russia (TOF, 20 instruments)

(often: life-time core, virtually no burnup of uranium fuel)

Pulsed reactors do not require regular supply of fresh fuel

but some also for civilian research using
neutron scattering techniques

Most of them are used for military research
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Identifying Optimum Conversion Strategies
How to use low-enriched fuel without compromising

the scientific usability of a research reactor
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Computational System
for Research Reactor Analysis

MCODE
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MCNP

Mathematica

Release 1.0
(MIT NED)
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(Los Alamos)

Release 2.2
(Oak Ridge)

M O3

Source: A. Glaser, Ph.D. thesis, Darmstadt University of Technology, April 2005
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High-Flux Reactor Fuel Elements

HFIR fuel element (Source: BWXT)

MCNP model of FRM-II core
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Neutron Spectrum in Beam Tube
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Scientific Usability
What is a “marginal loss” in reactor performance?
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International Nuclear Fuel Cycle
Evaluation (INFCE), 1978-80

        “In assessing the practical feasibility of utilizing lower enriched fuel 
in existing research reactors, the agreed criteria are that the safety 
margins and fuel reliability should not be lower than those for the current 
design based on highly enriched uranium, and that neither any loss in 
the overall reactor performance (e.g. flux per unit power) nor any 
increase in operation costs should be more than marginal.”
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A Crude Method to Quantify
Scientific Usability

( It’s not good enough)
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“Figure of Merit”
to quantify the scientific usability of neutron sources

FOM = n 2
log φ!

φ! = φ · 10−13
(

n/cm2s
)

−1
with

φ = 1014
(

n/cm2s
)

→ FOM = 2 nφ = 1013
(

n/cm2s
)

→ FOM = n

D. Richter and T. Springer
A twenty year forward look at neutron scattering facilities in the OECD countries and Russia

Technical Report, European Science Foundation, November 1998

Inherent shortcoming of approach: all instruments are weighed equally
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“Figure of Merit”
(of existing neutron sources operated in continuous mode)

Australia HIFAR 2.2 7 15.4

Canada NRU 2.8 6 16.8

Denmark DR3 2.3 8 18.4

France HFR 4.2 32 134.4

France Orphée 2.8 25 70.0

Germany BER-II 2.5 16 40.0

Germany FRJ-2 2.5 16 40.0

Germany FRG 1.9 8 15.2

Germany FRM-II 3.6 17 61.2

Hungary BNC 2.3 7 16.1

Japan JRR-3M 2.5 23 57.5

Country Facility
Weight
Factor

Scattering
Instruments

Figure of
Merit

South Korea Hanaro 1.7 6 16.2

Netherlands HOR 1.2 5 6.0

Norway JEEP II 1.3 5 6.5

Russia IR-8 2.3 4 9.2

Russia IVV-2M 2.0 7 14.0

Russia WWR-M 2.2 12 26.4

Denmark R-2 2.0 5 10.0

Switzerland SINQ 2.5 13 32.5

USA HFBR 3.0 14 42.0

USA HFIR 4.2 9 37.8

USA NBSR 2.5 17 42.5

Country Facility
Weight
Factor

Scattering
Instruments

Figure of
Merit

Data and methodology based on Richter and Springer, 1998 LEUHEU
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Quantitative Upgrades
Example: HFIR at ORNL

Country Facility
Weight
Factor

Scattering
Instruments

Figure of
Merit

USA HFIR 4.2 9 37.8

USA HFIR
upgrade 1 4.2 12 50.4

USA HFIR
upgrade 2 4.2 15 63.0

USA HFIR 3.95 15 59.3

USA HFIR 4.10 15 61.5

Assuming 20% loss of thermal flux

Assuming 10% loss of thermal flux

Status in 1998

Status in 2006

Preliminary conversion studies for HFIR
R. T. Primm III, R. J. Ellis, J. C. Gehin

Design Study for a Low Enriched Uranium (LEU) Core for the High Flux Isotope Reactor (HFIR)
ORNL/TM-2006/80 (Preliminary Report), April 20, 2006
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Qualitative Upgrades
Example: NBSR at NIST, new cold neutron source (2002)

Source: NIST Center for Neutron Research, Annual Report 2002
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Qualitative Upgrades
Example: HFR at ILL, Millennium Program (2000-2015)

Country Facility
Weight
Factor

Scattering
Instruments

Figure of
Merit

France HFR 4.2 32 134.4 Status in 1998

France HFR 4.2 (32) Status in 2006Millennium Program underway

Richter and Springer methodology not applicable
but ILL reports a 10-fold increase of total efficiency (as of 2006)

due to instrument upgrades and guide renewals

?
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ILL Millennium Program

Mean gain in ILL total efficiency 

0
2
4
6
8

10
12
14
16
18

19
99

20
01

20
03

20
05

20
07

20
09

Year

Instr.+Guide
Renewal

Instr. Renewal
Only 

Source: D. Dubbers, The Institute Laue-Langevin and its role in Neutron Science, Millennium Symposium, April 27-29, 2006

Very ambitious long-term program
Budget in 2006: €5.8M

(for both instruments and infrastructure) 
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Qualitative Upgrades

Country Facility
Weight
Factor

Scattering
Instruments

Figure of
Merit

Status in 1998

Status in 2006Millennium Program underway

Richter and Springer methodology not applicable
but ILL reports a 10-fold increase of total efficiency (as of 2006)

due to instrument upgrades and guide renewals

France HFR 3.95 (32) 126.4

France HFIR 4.10 (32) 131.2

Assuming 20% loss of thermal flux

Assuming 10% loss of thermal flux

based
on pre-MP

FOM

 Instrument upgrades and guide renewals very effective in increasing
the scientific usability of neutron sources

Example: HFR at ILL, Millennium Program (2000-2015)

France HFR 4.2 32 134.4

France HFR 4.2 (32) ?
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Conclusion and Outlook

Since 2002, broad international support to end the use
of highly enriched uranium in the civilian nuclear fuel cycle

(“Global Cleanout of HEU”)

Example: U.S. support for these initiatives 

Global Threat Reduction Initiative, since 2004: $107M in FY2007 (+10% vs 2006)

includes funding for RERTR Program: $32M in FY2007 (+30% vs 2006, +430% vs 2003)
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Why Does That Matter to
the Neutron Scattering Community?

Performance gains due to instrument upgrades and/or
neutron guide renewals dwarf potential neutron flux losses

after conversion to low-enriched fuel 

Opportunity to develop a “package for the system”

Coordination of projects to upgrade instruments and renew guides
with efforts to convert HFRs to LEU fuel 

A Win-Win Situation!?
Process is likely to develop momentum/support for upgrade more effectively

(given the broad international support to end the use of HEU from the civilian nuclear fuel cycle)

Identification of conversion/upgrade strategies that optimize the performance of integral system
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