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Scientific interest for developing new instrumentation

Many emerging phenomena are governed by complex disorder and 
short range correlations on the 1-10nm length scale

- Colossal Magnetoresistance 

- Geometric Frustration

- Fast Ion Conduction - Quasicrystals

- Nanoporous Host-Guest Frameworks - Doped Semiconductors

Jahn-Teller polarons

in CMR manganites

Polar nanodomains 

in relaxor ferroelectrics

Hexagonal AF spin cluster in a

geometrically frustrated magnet

-   Relaxor Ferroelectricity

-   Molecular Crystals

deviations from the 
average structure

short-range correlations
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Challenges of Single Crystal Diffuse Scattering

• Diffuse scattering weak compared to Bragg signal.

• Requires both, high Q-resolution and large Q-coverage for accurate  
modeling.

• Energy discrimination required to separate quasi-static diffuse 
scattering from dynamic processes such as phonons.

• Quantitative analysis is usually confined to models of low complexity.

Need to develop highly efficient tools for measuring and analyzing 
single crystal diffuse scattering from systems with complex disorder.
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Proposal for highly efficient instrumentation
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Intensity at detector when beam transmission is 
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Cross Correlation Chopper
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Statistics
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Full Experiment Simulations with McStas
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Comparison with conventional chopper
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Gain in efficiency

Gain = 
rel. var. S(correlation)

rel. var. S(conventional)

➡ Gain factor < 1 : less efficient

➡ However, Gain factor is for a single channel 
but the correlation chopper covers many 
channels simultaneously (N=255)
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Gain Factor for Q-independent excitation

Scattering Function
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Gain Factor for Q-independent excitation

Scattering Function

Gain for strong reflections
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Ongoing development

Realistic single crystal diffuse scattering

– ZrO2

– Manganites

Prototype

– Comparison with simulation

Proposal to SNS

Investigate other applications that could benefit using correlating technique

– Energy and momentum dependence even for single scattering angle
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Prototype Instrument at IPNS: Christina
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Christina Design Parameters

• IPNS

-

-

• L1 = 13.6 m

• Chopper: N=255, R~0.3m, 250Hz based on SNS bandwidth choppers (different disc 
design)

• L2 = 2m, He (or Ar) filled secondary flight path

• ARCS-type detector

-

-

-

• Resolution estimate (for Ei ~ 20meV)

-

-

• Energy resolution from simulation
-

-



SNS Instrument Proposal: CORELLI

Propose to build dedicated instrument at SNS:
– decoupled, poisoned moderator (short pulse)

– L1 ~ 20m

– L2  2.5m ( energy resolution, sample size)

– ARCS type linear PSD’s, large coverage

– correlation chopper with N ~ 256, c=0.5, R  0.3m, f  200 Hz

Ei (meV)  (meV) Q/Q (30°) Q/Q (60°) Q/Q (90°) Q/Q (150°) 

10 0.11 6.4 x 10-3 3.0 x 10-3 1.8 x 10-3 0.7 x 10-3 

20 0.31 6.4 x 10-3 3.1 x 10-3 1.9 x 10-3 0.9 x 10-3 

50 1.18 6.5 x 10-3 3.2 x 10-3 2.0 x 10-3 1.2 x 10-3 

75 2.17 6.5 x 10-3 3.3 x 10-3 2.2 x 10-3 1.4 x 10-3 

100 3.33 6.6 x 10-3 3.4 x 10-3 2.3 x 10-3 1.6 x 10-3 

Resolution estimates for Corelli based on: decoupled water moderator, L1 =  20m, L2 = 2.5m, sample size 1x1cm2, 
detector pixel size 2.5cm. The transverse resolution is generally much better except at very high scattering angle. 
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Conclusion

Cross Correlation technique at pulsed source promises huge gains in 

efficiency for

– Single crystal diffuse scattering with energy discrimination

– Weakly Q-independent excitations

Further investigations necessary to test efficiency for spectroscopy in 

constrained geometries

– e.g. high pressure spectroscopy

Prototype under construction

– Limited flux, resolution, detector coverage

– Sufficient for real experiments and further development of technique

Proposal for dedicated instrument at SNS in preparation


