

- 1) The Geant4 Toolkit
- 2) Functionality and "Plug-in"-ability
- 3) Geometry
- 4) Physics Processes
 - a) Neutron scattering elastic
 - b) Neutron HP extension to Geant4
 - c) Electromagnetic Physics
 - d) Adding your own physics models
- 5) Summary and Conclusions

Alexander Howard, CERN on behalf of the Geant4 Collaboration

ine Geant4 I oolkit

- Geant4 is a software toolkit for the simulation of the passage of particles through matter
 - Has been developed over the last 12 years by over 100 developers (both computer scientists and physicists)
 - Adopts object-oriented technology
- Used by a large number of experiments, in a variety of application domains, including: high energy physics, astrophysics and space science, medical physics and radiation protection
- It provides comprehensive detector and physics modelling capabilities embedded in a flexible structure
- Its kernel encompasses tracking (including fields); geometry; material specification; physics processes; digits + hits; flexible graphics and UI; biasing and variance reduction; scoring and user defined possibilities

Geant4 Structure

- Geant4 consists of 17 categories
 - Largest categories are physics and geometry
 - Tracking provides engine used for all particles and physics choices
 - Toolkit with component design
 - Interfaces between categories are stable long-term
 → plug-in ability

Detector Description

- Within Geant4 there is a defined geometrical hierarchy
 - 1. Solid shape of object
 - 2. Logical Volume material properties, sensitivity, daughters
 - 3. Physical Volume placement, position, rotation
- There a number of pre-defined shapes (constructed solid geometry), boundary representations and also boolean operations (union, subtraction, intersection)

Geant4 Physics

- Physics processes are grouped into 3 main categories:
 - Electromagnetic (EM) including optical ray-tracing
 - Hadronic
 - Decay
- Particle interaction is simulated using an abstract interface \rightarrow process
- A whole range of physics modelling is included in Geant4
- The toolkit nature means that user defined physics processes can be included and easily interfaced to Geant4

Kunning Geant4 - configurability

- Geant4 includes transportation in fields/potentials
- Parameterisation / fast- simulation
- Event Biasing/Variance Reduction
 - At the process level (forced cross-section/final state) e.g. RDM
 - Russian roulette
 - Weight window
 - Geometrical importance sampling
- Different configuration of physics processes can be applied to the same experimental setup
 - Trade precision vs performance
 - Different strengths and weaknesses in physics models

Models in hadronic framework

Alex Howard, CERN

PSI 3rd October 2006

Fladronic Physics Models

• There are 3 types of models in Geant4 hadronic physics:

- Data driven (cross-sections, angular distribution, multiplicity)
 - . Coherent elastic scattering
 - Radioactive decay
 - High precision neutrons (E < 20MeV)
- Parameterisation (semi-empirical/data and theory formulae)
 - Fission
 - Capture
 - LEP, GHEISHA based HEP models
- Theoretical (true hadronic models)
 - Phenomenological (Quark Gluon Strings, CHIPS)
 - Intra-nuclear cascades, de-excitation and break-up
 - Final states determined by sampling theoretical distributions

Hadronic model inventory

• At Rest:

- -Capture of μ^- , π^- , K^- , antip, Σ^- , anti- Σ^+ ...
- -radioactive decay
- Elastic:
 - $-\pi$, K, p, n, hyperons
- Inelastic:
 - -different models for π , K, p, n, hyperons
 - —photo-nuclear, leptonnuclear neutrino-nuclear
 - —Ions
 - -Capture in flight (n, γ), π^-
 - neutron-induced fission

Neutron spectra by 1.5 and 3 GeV protons

Alex Howard, CERN PSI 3rd October 2006

Alex Howard, CERN PSI 3rd October 2006

CHIPS improvement of neutron-proton interaction

17

Alex Howard, CERN PSI 3rd October 2006

Low energy (< 20191e v) neutrons physics

- High Precision Neutron Models (and Cross Section Data Sets)
 - G4NDL
 - Elastic
 - . Inelastic
 - Capture
 - Fission
- A data-base driven model
- The data are including both cross sections and final states.
- Derived evaluations based on the following evaluated data libraries (in alphabetic order)
 - Brond-2.1; CENDL2.2; EFF-3; ENDF/B-VI.0, 1, 4; FENDL/E2.0; JEF2.2; JENDL-FF; JENDL-3.1,2; MENDL-2
- The data format is similar to ENDF, however it is not equivalent

Simulation of the TARC experiment - neutrons

- Neutron Driven Nuclear Transmutation by Adiabatic Resonance Crossing (Cern 96-97)
- 334 tons of pure Pb in cylindrical
 3.3m x 3.3m x 3m block.
- 12 sample holes are located inside the volume to measure capture crosssections on some isotopes.
- 2.5 or 3.5 GeV/c proton beam.

TARC original simulation

Alex Howard, CERN PSI 3rd October 2006

QGSP_BIC

10

1

3

Geant4

8

9 log₁₀(E)/eV

Electromagnetic Physics Packages

. Standard

- $-\gamma$, e from 1 keV to 1 TeV
- hadrons from 1 keV to 1 TeV
- ions up to 100 GeV

. Muons

- from 1 keV up to 1 PeV
- high energy processes large energy transfer
- absoption at rest

. Xrays

 xray and optical proton production

- *Low energy* : alternative set of processes
 - for gamma, electron down to 250 eV
 - Hadrons down to 250 eV
 - Fluorescence
 - Auger electrons
- Optical
 - Optical photon interaction

User implemented physics process

- For example a group from DESY in Berlin introduced a high energy polarisation of electrons physics model
 - Polarised target and projectile

Geant4 Simulation for E166 Experiment at SLAC

Karim Laihem, Andreas Schaelicke, and Pavel Starovoitov for E166 collaboration DESY, Zeuthen

Scoring and Storing Information

- Given geometry, physics and primary track generation, Geant4 usually simulates physics "silently"
 - You have to choose or add user code to extract observables
- . There are two ways:
 - Use user hooks (G4UserTrackingAction, G4UserSteppingAction, ...)
 - Straight-forward, but "do-it-yourself"
 - . You have full access to almost all information
 - Use Geant4 scoring from G4VSensitiveDetector in a volume
 - Store hits. A hit is a snapshot of the physical interaction of a track or an accumulation of interactions of tracks in the sensitive part of your detector.
 - New Geant4 scorers provide standard implementation of fluence, dose, equivalent dose, ..

Visualization

- Quick response to study geometries, trajectories and hits
- High-quality output for publications
- Flexible camera control to debug complex geometries
- Tools to show volume overlap errors in detector geometries
- . Interactive picking to get more information on visualized objects

User Support

- Geant4 web page <u>http://cern.ch/geant4</u> include important links to
 - Installation guide
 - Application developer manual
 - Physics Reference Manual
 - FAQ
 - HyperNews forum for user/developer and user/user communications
 - Bug report system

Geant4 Toolkit

Alex Howard, CERN PSI 3rd October 2006 V.Ivanchenko

27

Summary and Conclusions

- Geant4 is powerful toolkit allowing the simulation of complex geometries with the physics of particle interactions and tracking
- A full-range of physics is included ranging from very low energy eletromagnetic processes to very high energies
- A selection of hadronic physics models are included with applicability of different energy ranges/use cases
- Neutrons are handled in a selection of hadronic models from high precision data-base driven to intra-nuclear cascades and string-parton models
- The toolkit design allows plug-ability and user defined physics processes (e.g. See the very next talk)

Thanks to the collaboration for providing material for this presentation