International Workshop on Applications of Advanced MC Simulations

Paul Scherrer Institut, 2 - 4 October, 2006

FOCUS Intercomparison using McStas/VITESS/Restrax

U. Filges¹, J. Saroun², F. Juranyi¹, G. Zsigmond¹ ¹Laboratory for Development and Methods (PSI), Switzerland ² Nuclear Physics Institut, Czech Republic

McStas/VITESS/Restrax Intercomparison

- package versions
 - McStas 1.8 (Linux)
 - VITESS 2.6 (Linux)
 - Simres-Restrax 5.0.3 (Linux)
- including a two part intercomparison:
 - the FOCUS guide system and
 - the FOCUS instrument itself
- FOCUS Guide system was completely simulated in the wavelength range of 0.1 – 20 Å using both flat and Maxwellian wavelength distributions (Part 1)
- FOCUS instrument was simulated for the wavelengths 2 Å, 4 Å and 6 Å (typical working range of FOCUS) – Part 2

FOCUS Guide System – Part 1

Comparison of Intensities at Different Guide Positions for Wavelength Range 0.1 - 20 Å (flat wavelength distribution)

guide position	McStas	VITESS	deviation
1.77 m	1.000	1.000	
3.77 m	0.638	0.641	0.47 %
6.43 m	0.586	0.588	0.34 %
18.43 m	0.512	0.515	0.58 %
30.93 m	0.466	0.470	0.85 %
39.27 m	0.443	0.447	0.89 %
54.17 m	0.411	0.415	0.96 %
62.67 m	0.396	0.399	0.75 %
66.89 m	0.389	0.393	1.02 %
69.90 m	0.369	0.378	2.38 %

The calculated values from VITESS are slightly higher as in McStas.

PSI - Cold Source Definition Parameters for Absolute Neutron Flux Calculations

raw data and their flux-Maxwellian fit function

$$f(\lambda)d\lambda = \sum_{i=0}^{i=1} I_i * 2 * \left(\frac{\lambda_{T_i}}{\lambda}\right)^4 \exp^{-\left(\frac{\lambda_{T_i}}{\lambda}\right)^2} \frac{d\lambda}{\lambda}$$

Maxwellian distribution function

Two-Maxwellian parameter set for the cold source :

 $I_0 = 8.5 \ 10^{11} \text{ n/cm}^2/\text{sr/sec/mA}$ $\lambda_{\tau_0} = 1.79 \text{ Å}$ $I_1 = 5.2 \ 10^{11} \text{ n/cm}^2/\text{sr/sec/mA}$ $\lambda_{\tau_1} = 4.83 \text{ Å}$

Ref: F. Atchison, "Calculated neutron intensities for SINQ", PSI report No. 98-03

McStas/VITESS/Restrax Input **1.77 m Position – Guide Entrance**

Comparison of Intensities at Different Guide Positions for Wavelength Range 0.1 - 20 Å

guide position	McStas [n/s]	VITESS [n/s]	Restrax [n/s]	Deviations (MV/MR/VR) [%]
1.77 m	2.829e+11 +/- 6.63e+07	2.829e+11 +/- 8.96e+07	2.818E+11 +/- 2.053E+08	0.00/0.4/0.4
3.77 m	7.487e+10 +/- 3.15e+07	7.508e+10 +/- 4.24e+07	7.471E+10 +/- 1.247E+08	-0.28/0.2/ 0.5
6.43 m	4.093e+10 +/- 2.02e+07	4.114e+10 +/- 2.68e+07	4.094E+10 +/- 9.741E+07	-0.51/0.0/ 0.5
18.43 m	2.375e+10 +/- 1.11e+07	2.409e+10 +/- 1.43e+07	2.389E+10 +/- 4.335E+07	-1.41/-0.6/0.8
30.93 m	2.038e+10 +/- 9.20e+06	2.062e+10 +/- 1.15e+07	2.057E+10 +/- 1.341E+07	-1.16/-0.9/0.2
39.27 m	1.932e+10 +/- 8.89e+06	1.955e+10 +/- 1.11e+07	1.947E+10 +/- 2.437E+07	-1.17/-0.8/0.4
54.17 m	1.778e+10 +/- 8.45e+06	1.799e+10 +/- 1.05e+07	1.794E+10 +/- 2.492E+07	-1.16/-0.9/0.3
62.67 m	1.705e+10 +/- 8.24e+06	1.725e+10 +/- 1.03e+07	1.716E+10 +/- 1.966E+07	-1.16/-0.6/0.5
66.89 m	1.672e+10 +/- 8.24e+06	1.691e+10 +/- 1.02e+07	1.683E+10 +/- 3.507E+07	-1.12/-0.6/0.5
69.90 m	1.593e+10 +/- 7.87e+06	1.623e+10 +/- 9.84e+06	1.617E+10 +/- 1.890E+07	-1.85/-1.5/0.4

Comparison Measured and Simulated Absolute Neutron Flux for the FOCUS Guide System

guide position	McStas Φ[n/cm ² sec]	VITESS Φ[n/cm ² sec]	Restrax Φ[n/cm ² sec]	goild foil measurement Φ[n/cm ² sec]
54.17 m	2.96·10 ⁸ (3.37%)	3.00·10 ⁸ (4.67 %)	2.99·10 ⁸ (4.43 %)	2.86·10 ⁸
62.67 m	2.83·10 ⁸ (10.60 %)	2.87·10 ⁸ (11.84 %)	2.86 [.] 10 ⁸ (11.53 %)	2.53·10 ⁸

*neutron flux is given for 1 mA SINQ current (circalloy target)

wavelength distributions at position 54.17 m

Comparison of Wavelength-Divergence and Wavelength distribution at Position 3.77 m for the Wavelength Range of 0.1 - 20 Å

Comparison of Wavelength-Divergence and Wavelengthdistribution at Position 30.93 m for the Wavelength Range of 0.1 - 20 Å

Comparison of Wavelength-Divergence and Wavelengthdistribution at Position 66.89 m for the Wavelength Range of 0.1 - 20 Å

FOCUS Instrument simulations – Part 2

View on FOCUS

Schematic design of the time-of flight spectrometer FOCUS

Comparison of Time-of-Flight and Wavelength-Distribution Monitors in front of Fermi-Chopper 0.94 m behind Monochromator for 4 Å

Comparison of Position-Divergence and time-of-flight-Wavelength Monitors in front of Fermi-Chopper 0.94 m behind Monochromator for 4 Å

Comparsion of Beam Profiles

- measurements were performed with a neutron imaging camera 95 x 65 mm (HxW)

Comparison of neutron flux at sample position

Comparison of Energy Resolution at Sample Position

Summary

- the guide intercomparison shows nearly perfect consistency between all three used packages (McStas,VITESS,Restrax)
- the measured neutron flux values are differ only in range of 5 -10 %
- after the monochromator the differences between McStas and VITESS are slightly higher (small wavelength range)
- measurements at sample are agree very well with simulated McStas data (VITESS simulations will be done soon)

