Monte Carlo simulations for the development of polarised neutron instrumentation

G. Zsigmond Paul Scherrer Institut, CH-5232 Villigen PSI, Schwitzerland

International Workshop on Applications of Advanced MC Simulations PSI October 2 – 4 2006

VITESS programmer colleagues over the years: Klaus Lieutenant, Sergey Manoshin, Michael Fromme, Dietmar Wechsler, Friedrich Streffer, John Stride

UCN Group at PSI: Manfred Daum, Klaus Kirch, Axel Pichlmaier, Reinhold Henneck, Francis Atchison, Peter Fierlinger

The VITESS MC simulation package - Polarisation

New ultra cold neutron (UCN) optics components

Effectiveness of using 'virtual experiments' – an example: MC data evaluation of the Fermi potential

Outlook

The VITESS MC simulation package *Polarisation*

Polarisation since mid 2001 starting V2.0

Polarised modules

Supermirror polariser Polarising mirror ³He polariser Polarising bender Supermirror ensemble Coil flipper Gradient flipper Precession field Rotating field Drabkin resonator

Polarisation monitors

New features, extensions to come

QUESTION: how wavelength and divergence profiles look like ?

Three example trajectories from each zone.

New ultra cold neutron (UCN) optics components

New UCN optics components

NEW UCN SIMULATION CODE: **MCUCN**

- Tracking in complex geometry
- Gravity considered.
- Specular and diffuse reflections.
- Average lifetime τ_{decay} = 886 s.
- Loss, reflectivity:

$$\mu = 1 - R = 2\eta \sqrt{E_0 / (U - E_0)}$$
$$U = \frac{2\pi\hbar^2}{m} \rho \operatorname{Re} b$$

 $\eta = \operatorname{Im} b / \operatorname{Re} b$

vent. distance from moderate

Spin flipping will be included soon

G. Zsigmond

PSI MC Workshop 2006

New UCN optics components

• Calculated UCN velocity distributions $f_t(v)$ at different moments of time. • The boundary velocity is determined by the diamond-like carbon (DLC) coating: $V_{\perp \text{ critical}} = 6.89 \text{ m/s}$

Virtual experiment example: MC data evaluation of the Fermi potential

Use of virtual experiments

Measurement of the Fermi potential – MC data analysis

PSI MC Workshop 2006

100	200	300	400	100	200	300	400	500	600	100	200	300	40	
time [ms]					time [ms]						time [ms]			
Sample		v _c [m/s] table data		v _c [m/s] TOF - VITESS			V _{Fe}	/ _{Fermi} [neV] TOF - VITESS			More in Phys. Lett. B (accepted) and Phys. Rev. C (submitted)			
Be on Si		6.94		6.9 ± 0.2				249	249 ± 14					
Fe ↑↑		8.09		8.2 ± 0.2			35	351 ± 14						
Fe ↑↓		3.86		3.7 ± 0.2			72	72 ± 8 279 ± 15						
Ni ↑↑ on Si 7.36				7.3 ± 0.2									279	
Ni ↑↓ oi	n Si	6.29	6.29			6.4 ± 0.2				214 ± 14			7	
												-		

0.0

0.0

G. Zsigmond

0.0 -

PSI MC Workshop 2006

✓ Polarization VITESS – great efforts made & more to come

✓ New UCN optics components to be adapted for cold neutrons

 ✓ Virtual experiments as very effective routine tools for data analysis