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Required Optimisations to MC codes

Simulation geometries are becoming much more complex

I Point tallies are energy/time bound AFTER track distance
(Don’t need to record the whole time/energy table)

I Point tallies with windows and geometry limits (All
deterministic tallies should be non-model scoped)

I Avoid continuous of create/destroy dynamic casts

I Free initialization memory

I Page faults from long goto’s account for 60% of runtime CPU
[MCNPX].

I There is only one stack space: Don’t Waste It

I Probability bias the simulation
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Realization of Optimisations to MC codes

I Memory allocated dynamically once

I Larger running footprint
I 30% Reduction in run-time

I Point tally improvement

I Window needs to be correctly set
I Faster than non-focused point tallies
I x1000000 faster than without Point tallies
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Realization of Optimisations to MC codes

I pre-run Weight window generator

I Cannot Fail(unlike WWG)
I Uses Prior simulation selection in available

I Pipe line copies are minimised

I Wrap data sets into object
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Job Control

I We can run 300 MCNPX jobs an hour.

I Automate run/submission/analysis

I Need active geometry handling. [ MCNPX included geometry
is extremely poor]

I The easiest is a programming language

I Compiler checking avoid stupid run-time problems
I Parameters within a tightly defined environment
I Pre-run verification
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Optimisation Algebra

Example
122 5 0.11102 1 -2 3 -4 5 -6 (-11 : 12 )

Example
In object with surfaces a,b,c,d,e,f

I Monte Carlos depends on boolean algebra

I The algebra density is proportional to the component4

I It is mostly hidden

Proof.
a := surface x = 5 (px 5)
b := surface x = 10 (px 10)
b => a and a′ => b′
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Optimisation Algebra (cont)

Example
122 5 0.11102 ab′cd ′ef ′(g ′ + h)
a => b
b′ => a′

Substitution of a => b by (a’+b)
Objective is to minimise literals terms
Silicon chip optimisation : Minimise number of links
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Optimisation Algebra (cont)

Current strategy:

I Examine system and expand complements

I AND additional knowledge for parallel planes, cylinders etc.

I Quinie-McClusky method to produce minimum both SOP and
POS (DNF and CNF)

I Factorize (FPD and Good Factor)

I Remerge the tree by top-base substitution

I Factor for a humanly present form
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Optimisation Algebra (cont)

I Take a long time. Restricted to complementary object roll out

I The output often incomprehensible

I Faster QM method needed (or to be avoided)

I By far the most useful MCNPX code for non-MCNPX
applications
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Basic moderator Equations (Wrong)

D∇2φ(t)− Σaφ(t) + s = −1

v

δφ(t)

δt

e.g. Sigma-Pile solution for a cube

φ(t) = const exp(−
1 + B2L2

T

td
)

B2
lmn = (

lπ

a
)2 + (

mπ

b
)2 + (

nπ

c
)2

φ(t) = Neutron Flux(time)
D = Diffusion Length
td = Diffusion Time

LT = Transport length
(D2/Σa)
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Other Solutions of Moderator Equations

I Solutions by perturbation
I e.g. reflector / moderator

I Solutions by overlap

I e.g. Vanes

I Solutions by boundary instability

I e.g. Castles
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They are all generic equations:

1. Solve the sum series for the optical boundary problem

2. Use convolution/subtraction methods

3. Repeat for all higher orders (set fundamental length by factor
2,3,4 etc.)

4. Create a set of solutions and index them.

5. Find the initial source distribution in terms of each boundary
solution
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6. Substitute

φ(r , t) =
∑
index

Tindex(t) ∗ FSolindex (1)

7. into

L2
T∆φ(r , t)− φ(r , t) = td

δφ(r , t)

δt
− s(r)δ(t)

Σa
(2)
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Conclusions

I Code your multi-parameter runs

I Get a replacement for MCNPX (Geant ??) and integrate to
the sample simulation

I Mathematics should still be used with modern design

I We still don’t know how to build the best moderator
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