

Neutron Instrument Si	mulation Package						
Code Installation							
Download http://PASeeger.com/downloads/NISPforWindows.zip							
Extract files, including:	structions						
x:\\NISP\aaaread.me	Construct instrument, write geometry file						
\NLSP_win.exe \MC_Run.exe \WC_Run.exe	Run simulation using geometry file						
\See_MC_Data.exe \Super_Know.exe	Plot 1D and 2D detector histograms						
\Material.txt \Crystal.txt	Make histograms from "Monitor" file						
NISP.cnt REQUIRED by NISP_Win							
\Tables*.tbl moderator energy/time tables							
\Powders *. par powder diffraction samples							
Kernels * . sab inelastic $S(\alpha, \beta)$ data (from MCNP)							
C:\PGPLOT\grfont.dat required to get text	abels on traces and graphs						
Total length of <i>all</i> files from the .zip file is 10.	3 Mbytes, including complete sources.						
Note: to view the Virtual Reality, install Octag	a Player (http://octaga.com).						
• Los Alamos	LANSCE						

P.A.Seeger & L.L.Daemen

Neutron Ins	strument Si	m	nu	la	ati	io	n	F	Da	IC	k	a	ge	è					
Features of NISP Win - Con	nection Matrix																		
Linear connections marked by "X" LAPTRON (f.p.8) → Bulk Shield Pipe → Pipe # 2 * → Incident beam shield	Leit mouse – Connect	LAPTRON (f. 🖟	Bulk Shield	Pipe #2	Incident bea 🔓	Pipe #3	Final Apertu 🖥	Inner Chamb	Outer Chamb	Sample, CaF2	Absorbing ch <mark>I</mark>	Void chip [1 📅	North Anvil	West Anvil 芹	South Anvil	East Anvil	Upper Anvil 🍯	Lower Anvil B	Monitor @ 10 <mark>6</mark> Radiography <u>a</u>
→ Pipe # 3 *	LAPTRON (f.p.8)																		
\rightarrow Final Aperture	Bulk Shield Pipe																		• •
	Pipe # 2																		• •
Surrounding regions marked by "S"	Incident beam shield																		• •
*Outer Chamber	Pipe # 3																		• •
⊃ Inner Chamber	Final Aperture																		• •
\supset Sample, CaF2 \supset Absorbing chip	Inner Chamber (anvils, sample)																		• •
⊃ Void chip	Outer Chamber (detectors)																		• •
⇒ North Anvil	Sample, CaF2																		
· · · total of 6 anvils	Absorbing chip [10]																		• •
⇒ Lower Anvil	Void chip [11]																		• •
⇒ Radiography Detector	North Anvil																		
⊃ Top Left Detector	West Anvil																		
· · · total 14 detector banks	South Anvil																		
⇒ 144deg Down Detector	East Anvil																		
*Pipe # 2	Upper Anvil																		
⊃ Guide segment 1	Lower Anvil																		
⊃ Guide segment 2	Monitor @ 10.55 m																		-
⊃ Guide segment 3	Radiography Detector																		
→ Final Guide	(1	bart	ial	cor	ined	ctio	n m	natr	ix fo	or L	AP	TR		1)					
• Los Alamos								.,							ł	A	N	S	CE-

Neutron I	nstrument Simulation Package								
MC_Run: Runtime Parameters									
\$RUN									
$MON_SURF = 0$	Surface number to monitor ("0" for none, negative								
	for corresponding source neutron only)								
CORR_SURF = 0	"0" for no correlation, "-1" for preceding surface,								
	" 1" for source, or "nnn" for surface nnn								
SCAT = 'N'	Record all detected neutrons in files ('Y' for yes)								
BAD = 'N'	Record complete traceback of Bad neutrons ('Y' for yes)								
NSPLIT = 1	Neutrons reaching sample may be used more than once								
$WT_MIN = 1.0E-06$ Minimum value of statistical weight to track									
WT_FRAC = 1.0E-03 Fraction of histories below WT_MIN to keep									
SPEC = 'T' Spectrum to be 'I'ncident or 'T'ransmitted?									
POIS = 'N'	Integer output with Poisson statistics ('Y' for yes)								
FIELD = 'N'	Include magnetic induction fields ('Y' for yes)								
TRACE = 'N'	Plot trajectories ('Y' for yes).								
GRAVITY = 'Y'	Include gravity ('N' for no).								
DUMPS = 'N'	Keep ALL intermediate dumps ('Y' for yes).								
REUSE = 1	Allowed number of times to reuse input source file								
ISEED = 123456	78 Random-number seed, 0 to randomize								
\$									
	LANSCE								

P.A.Seeger & L.L.Daemen

Neutron Instrument	Simulation Package
What are the UNIQUE features	s of NISP?
 Separation of <i>geometry</i> and <i>content</i> of regions use same algorithm in any shape may import algorithms directly from MCNP (<i>e.g.</i>, S(α,β)) Neutrons not constrained to specific sequence of elements use connection matrix instead of linear sequence multiple detector banks cradle-to-grave simulation find unexpected pathways see (some) background sources Splitting of neutrons in common materials track low-probability events track background scattered neutrons 	 Help button for every entry in the user interface Virtual Reality file to view instrument geometry All programs coded in structured Fortran fast execution of simulations may import C routines fairly easily (e.g., Single_crystal.comp) Magnetic fields integrates precession hexapole lenses (work in progress) may include 1/ t dependence for pulsed source Pulsed spallation sources defined from MCNP output Structures support tracking <i>photons</i> and other particles
• Los Alamos	-LANSCE-

Neutron Instrument Simulation Package						
 Shared features between NISP and other codes Speed, fast enough to make parameter searches practical simple TAS benchmark: NISP faster than McStas, slower than VITESS exception: integrating precession in a varying field is a little (8000x) slower Algorithms of varying complexity, as needed Trace mode to visualize neutron trajectories at run time Open-source, all codes publicly available Portability across platforms NISP user interface is not portable, but MCLIB and MC_Run are Documentation http://PASeeger.com, "NISP_Documents" or "Document Menu" 						
Needed Improvements in NISP • Portable User Interface • Benchmarks • Make it easier to add algorithms and beamline elements • More algorithms for polarized neutrons and devices • File outputs in NEXUS format • Institutional support and user support • You tell us: PASeeger@losalamos.com. Ild@lanl.gov						

