Enhanced Intensity and Greater Energy Range

Continuous Angle Multiple Energy Analysis

EINFACH BESSER

Why – a thermal three-axis spectrometer
 What – the multiplexing CAMERA concept
 How – design elements

H. M. Ronnow ETH-Zürich & PSI Switzerland

Ça me va

Paul Scherrer Institute

×2.0

Continuous spallation source SINQ

- Flux 3×10¹³ n/cm²s = ILL/30
 - $1.7 \Rightarrow 2.5 \text{ mA proton beam} \times 1.5$
 - Megapie target ×1.4 -1.8
- 15 instruments, 600 expts/year, single and long term proposals
- 2 cold neutron triple-axis spectrometers: TASP & RITA-II
- cold TOF: FOCUS
 Backscattering: MARS

Enhanced ?

- At PSI we need larger energy range and intensity
 ⇒ Thermal Neutrons Spectrometer
- Intensity / resolution

EIGER-CAMERA in three steps

- In-pile
 - McStas choice:
 - Virtual source (3cm wide)
 - v.s. trumpet (12 cm wide)
 - 2x flux on sample
 - 4x bck and problem @ 2θ<20°
- Monochromator and shielding
 - Shielding optimised with MCNP (U. Filges)
 - Mono designed analytical
- CAMERA
 - multiplexing TAS
 - developing concept

'time-of-flight' (TOF)

Moderator

- Direct geometry TOF
 - 2D or 3D-manifold in
 4D momentum-energy space
- MAPS, ISIS, UK $-16m^2$ detector $\Rightarrow 3x10^6$ Pixels -10 crystals $\Rightarrow 50$ g Sample -7 Days $\Rightarrow 1$ Data-set -5 Years $\Rightarrow 4$ PRL, 2 Nature +++

"State of the Art" TAS

TAS v.s. TOF \Rightarrow Multi-TAS

TAS

- Focus on <u>one</u> Point
- Flexible
- Already "optimal" (IN8, IN20..)

Multi-TAS

- a line in momentumenergy-space
- More Neutrons recorded than TAS
 - More flexible than TOF

TOF

25

Energy

0

- 2-3D manifold
- Overwiew sees "everything"
- Less flexible

 (π,π)

Still improving (6+ today)

Qk

MAD – Multi-Analyser-Detector

 $- ILL, IN3 ⇒ IN8 ! CuGeO_3$ - 47 x 0.33° Detectors 0.7 cm³- constant E_f=30 meV- PSI crew, F. Demmel, M. Jimenez-Ruiz et al.

EIGER

200

150

100

Jensen (Riso), HMR & M Kenzelmann (PSI), D Vaknin (Ames Lab)

Beispiel: LiNiPO₄

- High resolution around gap RITA-II
- Entire dispersion in 4h @ IN8+MAD
 20 scans ⇒ ~1000 (Q,E,Amp) Points

CAMEA

Simulation $Cu(DCOO)_2 \cdot 4D_2O$

CAMERA Resolution

Horizontal scattering dogma invalid for focusing !

Vertical resolution already bad

we focus again

in this direction

⇒ optimal energy-resolution

In-plane resolution

normally dominated by
focusing analyser

CAMERA makes it round

instead of elliptic
⇒ ×3 in resolution

Con: sample height < 2cm $^{-(}$ more than (2cm)³ \Rightarrow MAPS *et al.*

EIGER McStas of CAMEA setup (R. Haque)

• Setup: Source⇒sample

sampling dEi :

Sample height:

- Intensity plateau at 3 meV hot-spot from mono
- Resolution increase with size compromise: 2 cm.

• Remaining simulations optimised for 2 cm choice.

Sample to analyser distance?

EIGER

• Is there an optimal distance? *e.g.* a plateau in resolution(L)

• No plateau – just compromise intensity/resolution/price

Order of blades

• Having lowest energies first, reduce difference in intensity and resolution.

• (but is more expensive)

Cross-talk?

- Fix one blade, scan energy of next blade
- Find minimum distance (in energy) between blades

(1.5 meV in this case)

の法になって	Analyser Energy (meV)	Minimum Separation Successive Blade	Energy between es(meV)
1	5	± 0.25	
N N	7	± 0.50	
1ª	9	± 0.75	
1	11	± 1.00	
100	13	± 1.25	
Net A	15	± 1.50	

EIGER crew !

- Dieter Graf
- Uwe Filges
- Rahel Haque
- Joel Mesot, Bertrand Roessli, Christof Niedermayer
- Ch. Kaegi, T. Muehlebach, M. Horisberger, M. Schild, P. Keller, G. Theidel, P. Allenspach
- O. Morath

EIGER \Uparrow CAMEA \Rightarrow

(no myth - a Seattle DI)