Correction Methods for Neutron Imaging on the Basis of Monte-Carlo Simulations

René Hassanein Eberhard H. Lehmann

Paul Scherrer Institut Neutron Imaging & Activation Group

The content is part of the PhD thesis of R. Hassanein

Outline

- Introduction: the problem in quantification → scattering
- Setup of the transmission experiment
- Monte-Carlo model: The Point-Scattered Function approach
- Parameters and relevant data
- Correction tool: QNI
- Results of practical applications
- Outlook: further improvments

Water Distribution in Limestones

Porous **Salem Limestone** ('the' Indiana Limestone; a coarse-grained stone of calcite)

Mansfield Sandstone

(a red stone with relatively coarse grains)

Hindustan Whetstone

(a siltstone with angular, fine-grained quartz and feldspars)

Experimental Setup

Absorption of water in **upward direction** (Prof. H.O. Meyer, Indiana University)

Aluminum cover to prevent evaporation from surface

Absorption of water in **downward direction**

sealing and surfaces treated with silicon

Water migration in sandstones radiography

downward

flooding

upward soaking

Water migration in sandstones

The error in the quantification can be up to 100%!

Water Content in Sand Columns -tomography-

Simplified setup for radiographic studies

Approach for quantification (also in use for tomography)

$$I(E') = I_0(E) \cdot e^{-\Sigma(E) \cdot d}$$

- Assumed, the intensities I_o and I are measured precisely:
- The sample thickness d can be obtained, if the material composition is known
- The material properties Σ can be obtained, if the sample thickness is known

Problem 4: The transmitted beam is "contaminated" by diffuse scattered neutrons

The scattering pretends a higher transmission value behind the sample, which is mistaken for less mass thickness.

Skyshine by the Sample Scattering

Radiograph of 5 mm water in 2 cm distance to the detector with a horizontal profile

Monte Carlo Approach

- MCNPX is able to simulate all details of the transmission process
- This enables to consider all effects of neutron interaction with sample and detector
- The processes are separable into the transmitted and scattered component, defining the Point Scattered Function (PScF)
- The cross-section data are within the embedded data libraries of the code (some need for modification was identified)
- The F1 tally was used mainly

Simulation of the Point Scattered Function

The PScF is simulated by the Monte-Carlo software MCNPX.

The main parameters are:

- sample composition
- sample thickness
- energy spectrum of the neutron source, beam geometry
- detector material and thickness (energy sensitivity)
- sample detector distance

Correction of the Sample Scattering

Computation and subtraction of the sample scattering The sample scattering is computed based on **"Point Scattered Functions" (PScF)**.

Approximation of the PScF

Since the simulated PScF are noisy and are obtained for discrete sample thicknesses, detector distances and pixel sizes, an **approximation is necessary for the arbitrary values of a real experiment**.

The approximation is based on isotropic scattering:

$$PScF_{Approximation}(r) = S_A \cdot \frac{d_A}{4\pi (d_A^2 + r^2)^{3/2}}$$

Computation of the Sample Scattering

The total sample scattering is the **superposition of the corresponding PScF**, where each point* of the sample can have its own PScF (corresponding to the detector distance, sample material and transmitted thickness).

* "point" = group of about 4×4 pixels (depending on the image size) because of the computation time ~ (group width)⁻⁴

Iterative Algorithm

 Corrected transmission image = radiography – sample scattering

- With the corrected image, a more precise base for the choice of the PScF is available and the computation is repeated.
- After about 4 iterations the algorithm converges in the range of ±1 %.

Correction of the Spectral Effects

The Monte-Carlo simulations of the PScF provide also reference curves for the correction of the

- beam hardening
- energy dependent detector sensitivity

Detector Absorption Rates

Detector absorption rate: $A(E) = 1 - \exp(-\Sigma_{detector}(E) \cdot t_{detector})$

Effective Cross Section

Cross section of 2 mm water for the different detectors:

$$\Sigma_{\text{eff}, \text{H}_2\text{O}} = \frac{-1}{t_{\text{H}_2\text{O}}} \cdot \ln \frac{\int I(E) \cdot \exp(-\Sigma_{\text{H}_2\text{O}}(E) \cdot t_{\text{H}_2\text{O}}) \cdot A(E) \, dE}{\int I(E) \cdot A(E) \, dE}$$

detector	NEUTRA	ICON
	$\sum_{\rm eff}$ (1/cm)	$\sum_{\rm eff}$ (1/cm)
Gd, 135 µm	3.29	4.11
⁶ Li, 1:2, 250 μm	3.40	4.20
⁶ Li, 1:1, 250 μm	3.42	4.27
⁶ Li, 1:2, 50 μm	3.51	4.62
⁶ Li, 1:1, 50 μm	3.52	4.65

Correction of Tomograms

For tomograms **each projection is corrected** in a pre-processing step. (The change of the sample geometry and detector distance in each projection must be considered)

horizontal slice of an iron cube (side length 2.5 cm)

Experiments at ANTARES, FRM-II Munich

Example water steps: size 4×10 cm, thickness 0.5–5.0 mm, detector distance 4 cm

Application 2

Imbibition and Drainage of Sand Columns with D₂O

(Experiment: I. Neuweiler, M. Vasin, P. Lehmann, Univ. Stuttgart & ETH Zurich)

uncorrected slice

corrected slice

- more noise
- more artefacts
- + less blurring
- + more details
- + correct
 - attenuation values

Imbibition and Drainage of Sand Columns with D₂O

Conclusions

- Neutron radiography (NR) is suitable method for quantitative, non-destructive investigations with an accuracy of ~5 %, depending on the material combination.
- An appropriate experimental setup is decisive (facility, material, dimensions, detector system)
- The properties of the NR facility must be known (energy spectrum, detector)
- Monte-Carlo simulations are a valuable tool for the investigation of effects in NR (e.g. scattering, beam hardening, detector efficiency)
- A "user friendly" implementation of the correction algorithm allows to use the correction methods in the daily work and improve the results.

Outlook

- QNI the correction tool written in IDL
- Improved experimental conditions
- Further approaches needs considerations (cold neutron imaging, energy selective studies)

QNI – the correction tool

Work-flow

Based on PhD work of René Hassanein
Programmed in IDL
Available for other users in October 2006

Avoiding Background Scattering: Beam Delimiters

Beam limitations in order to avoid scattering sources:

- aperture at the front position
- aperture at the collimator exit
- limitation of the field of view (figure)

Recording of the Background Scattering

Measurement of the scattering behind a black body:

- not constant
- to be scaled

Distortion by Scattering at the Experimental Setup

Experiments at the Bragg edges of the materials →Improvement of the data base in MCNPX

