

Simulation of AMOR at SINQ

Source Spectrum

NISP uses direct sampling of the sum of two Maxwellian distributions. One random number is used to select which Maxwellian, then three additional random numbers sample that energy distribution:
A $=$ ran(iseed)
$B=r a n(i s e e d)$
$C=\operatorname{ran}($ iseed)
$E_{0}\left[\ln (A)+\ln (B) \cos ^{2}(\pi C / 2)\right]$ Real*8 random numbers are used. On a $2.8-\mathrm{GHz} \mathrm{PC}$, the execution time is 0.72μ s per neutron

Simulation of AMOR at SINQ

X-Y @ End of Guide 1 (beam splitter)

The first guide section includes two beams, with AMOR having the upper portion. The intensity scale is quadratic (proportional to statistical uncertainties). The $50 \times 50 \mathrm{~mm}^{2}$ square box shows the opening of the AMOR curved guide. Since measurements are generally made with a low-efficiency monitor with $1 / v$ sensitivity, we also estimate the λ-weighted count rate (normalized to $2200 \mathrm{~m} / \mathrm{s}$).
Energy on target: $\quad 6.640 \mathrm{E}-4$ MW-s Sum of neutrons: 2.989 E 7
Sum in $50 \times 50 \mathrm{~mm}^{2}: 1.987 \mathrm{E} 7$
λ-weighted sum: $\quad 5.499 \mathrm{E} 7$
mean wavelength: 4.977 A
flux @ $0.57 \mathrm{MW}=1.026 \times 10^{9} \mathrm{n} / \mathrm{s} / \mathrm{cm}^{2}$

Simulation of AMOR at SINQ

X-Y after Guide 2, Section 1
The guide curves to the left, so there are more neutrons escaping on the right side. The guide also has a central blade forming two channels with supermirror reflectors on the sides. This section is 10 m long, with a radius of curvature of 1234 m . Neutron histories were split at the beginning of this section.
Energy on target: $\quad 1.328 \mathrm{E}-3$ MW-s Sum of neutrons: 1.876 E 7
Sum in $50 \times 50 \mathrm{~mm}^{2}: 1.866 \mathrm{E} 7$
λ-weighted sum: $\quad 7.133 \mathrm{E} 7$ mean wavelength: $\quad 6.871 \AA$

Simulation of AMOR at SINQ

$\mathbf{X}-\mathbf{Y}$ after Guide 2, Section 2
Energy on target: $1.328 \mathrm{E}-3$ MW-s Sum of neutrons: $\quad 1.793 \mathrm{E} 7$ Sum in $50 \times 50 \mathrm{~mm}^{2}$: 1.788 E 7 λ-weighted sum: $\quad 6.975 \mathrm{E} 7$ mean wavelength: $7.015 \AA$

Simulation of AMOR at SINQ

X-Y @ End of Curved Guide 2
Energy on target: $\quad 1.328 \mathrm{E}-3 \mathrm{MW}-\mathrm{s}$
Sum of neutrons: 1.670 E 7
Sum in $50 \times 50 \mathrm{~mm}^{2}: 1.669 \mathrm{E} 7$
λ-weighted sum: $\quad 6.676 \mathrm{E} 7$
mean wavelength: $7.194 \AA$
flux @ 0.57 MW = $2.87 \times 10^{8} \mathbf{n} / \mathbf{s} / \mathbf{c m}^{2}$

Simulation of AMOR at SINQ

Horizontal Distribution at Guide Exit

X @ End of Guide 3

There is a linear variation of intensity across the width of the guide exit, but the major variations with x seen at the end of the curved guide have been smoothed out. We will ignore this variation when we create a source at this position. Although there are distinct patterns in the X-phase indicating correlations between x-position and x divergence, the average over all x can be used because the sample and detectors do not have x-sensitivity.
Neutron Instrument Simulation Package

Simulation of AMOR at SINQ

Y @ End of Guide 3
There is also a slight variation of intensity in the vertical direction, which will be ignored when a source is created at this location. On the basis of this plot and also the constancy of the Y-phase plot above, we assume that the y-divergence is not correlated with y-position. This independence allows us to average the full $50-\mathrm{mm}$ height of the guide exit to normalize flux per mm^{2}.
I Note: if gravity is turned off, the slope of this distribution is flat.

Simulation of AMOR at SINQ

Horizontal Divergence at Guide Exit

dX/dZ @ End of Guide 3

To determine the "brightness" at the end of the guide system, we average over a solid angle that is representative of the acceptance of the subsequent AMOR collimation system. For the horizontal divergence the range of averaging is about $\pm 0.26^{\circ}$. Although the distribution is not constant over this range, the effect on the result will be negligible because the instrument does not measure in the X direction.

Simulation of AMOR at SINO

Vertical Divergence at Guide Exit

dY/dZ @ End of Guide 3
The solid angle used to average the brightness is 16.00μ ster, and is a rectangle 5 times as wide as tall. The vertical distribution is quite flat across the narrow range determined the collimation. The sum of neutrons in this solid angle is 9.349 E 5 , or 5.72% of the total flux. The normalized brightness is
brightness: $1.760 \times 10^{4} \mathbf{n} /\left(\mathrm{MJ}^{2} \mathrm{~mm}^{2}-\mu \mathrm{ster}\right)$
This is a remarkably large fraction of the initial moderator brightness, $2.44 \mathrm{E} 4 \mathrm{n} /\left(\mathrm{MJ}-\mathrm{mm}^{2}-\mu\right.$ ster $)$.

Simulation of AMOR at SINQ

Wavelength Distribution at Guide Exit

Wavelength @ End of Guide 3

This distribution is used to generate source neutron energies at the end of the guides, by interpolation of a random number in the cumulative distribution of a log-log plot. The intensity shown on the plot represents $1.33 \times 10^{-3} \mathrm{MW}$-s of energy on target, in the full guide exit area of $50 \times 50 \mathrm{~mm}^{2}$. To normalize to $\mathrm{n} / \mathrm{s} / \mathrm{bin}$ at 0.57 MW , multiply by $430 / \mathrm{s}$.

Neutron Instrument Simulation Package
14
http://PASeeger.com

Simulat

Energy @ End of Guide 3 To generate good statistics through the instrument, without having to track millions more neutrons through the guide system, we define a new source at the exit of straight guide 3 . The usual form for NISP energy-spectrum tables is a spline fit to the cumulative distribution of $\log (\mathrm{E})$, weighted by λ. The upper plot shows the histogram of neutrons in $\log (\mathrm{E})$ bins, and the result of interpolating in the final spline fit. The lower curve shows the cumulative data (blue circles), the spline nodes (black +), and the spline curve (red line). To use the table, a uniform random deviate is chosen for the abscissa and the $\log (\mathrm{E})$ is interpolated in the spline. Because the sum is λ weighted, the statistical weight of the chosen energy is set proportional to $1 / \lambda$.

[^0]
Simulation of AMOR at SINQ

Polarization @ Exit

 of Aperture 2Since the polarization mirror is within a magnetic field, every neutron striking it is decomposed into spin components parallel and anti-parallel to the field, with $P_{x}=+1$ and $P_{x}=-1$ respectively. Each component is allowed to reflect, and both histories are followed. The plot shows a high degree of polarization at short wavelengths, decreasing at long wavelengths because both spin states reflect.

A possible improvement in the algorithm would be not to split in the cases where both (or neither) reflect, but to leave $\mathrm{P}=0$ for those neutrons.

Simulation of AMOR at SINQ

Polarization @ Exit of Aperture 3
Neutron polarization has been maintained by a guide field generated by rectangular coils. Because the field is not uniform, some depolarization may occur. Whenever it is sampled, the x-component of the polarization of each tracked history will be either +1 or -1 , or 0 if the neutron has no preferred orientation. When the neutron interacts with a polarized medium, it will be separated into two spin states with weights proportional to probabilities of the states.

Simulation of AMOR at SINQ

Polarization @ Exit of

 Aperture 3The expectation value of the x component of the polarization vector, as a function of wavelength. Error bars are based on the binomial distribution, and are generally smaller than the symbols.

Number of histories $=417674$
Execution time $=2 \mathbf{h r} 0 \mathbf{m i n}(1.2 \mathbf{G H z})$

[^0]: Neutron Instrument Simulation Package

